Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-4x+2x-8\right)\)
\(=2x^2+6x-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{1}{2}+16=5+16=21\)
Vậy: 21 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2+8x+16\right)-10x\)
\(=9x^2+24x+16-x^2-8x-16-10x\)
\(=8x^2+6x\)
Thay \(x=\frac{1}{10}\) vào biểu thức \(B=8x^2+6x\), ta được:
\(B=8\cdot\left(\frac{1}{10}\right)^2+6\cdot\frac{1}{10}=8\cdot\frac{1}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{60}{100}=\frac{17}{25}\)
Vậy: \(\frac{17}{25}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\) tại \(x=\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5,ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1
a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=-\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{-1}{2}+16=-5+16=11\)
Vậy: 11 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=-\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2-16\right)-10x\)
\(=9x^2+14x+16-x^2+16\)
\(=8x^2+14x+32\)
Thay \(x=-\frac{1}{10}\) vào biểu thức \(B=8x^2+14x+32\), ta được:
\(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\frac{-1}{10}+32\)
\(=8\cdot\frac{1}{100}-\frac{14}{10}+32\)
\(=\frac{2}{25}-\frac{14}{10}+32\)
\(=\frac{4}{50}-\frac{70}{50}+\frac{1600}{50}\)
\(=\frac{1534}{50}\)
Vậy: \(\frac{1534}{50}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\) tại \(x=-\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5, ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1
Nãy ấn nhầm thông cảm
1) a) đkxđ \(x\ne\pm3,x\ne1\)
Ta có : \(P=\left(\frac{2x}{x+3}+\frac{x}{x-3}-\frac{3x^2+3}{x^2-9}\right):\left(\frac{2x-2}{x-3}-1\right)\)
\(=\left(\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+3}{\left(x+3\right)\left(x-3\right)}\right):\frac{2x-2-x+3}{x-3}\)
\(=\frac{2x^2-6x+x^2+3x-3x^2-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+1}{x-3}\)
\(=\frac{-3x-3}{\left(x+3\right)\left(x-3\right)}.\frac{x-3}{x+1}=\frac{-3\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}=\frac{-3}{x+3}\)
b) Để \(P\in Z\) thì \(\frac{-3}{x+3}\in Z\Leftrightarrow x+3\inƯ\left(-3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng giá trị
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 |
-6 |
Vậy với \(x\in\left\{-2,-4,0,6\right\}\) thì \(P\in Z\)
c) \(\left|x+3\right|=5\Leftrightarrow\left[{}\begin{matrix}x+3=5\\x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Thay x=2 vào P, ta có : \(P=-\frac{3}{2+2}=-\frac{3}{4}\)
Thay x=-8 vào P, ta có : \(P=-\frac{3}{-8+2}=\frac{1}{2}\)
Vậy ....
2) a) đkxđ : \(x\ne1\)
Ta có : \(R=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left(\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=1:\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=1:\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2+x+1}{x}\)
Xét : \(P-3=\frac{x^2+x+1}{x}-3=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)
+)Nếu \(x\ge0,x\ne1\Rightarrow R>3\)
+) Nếu \(x< 0\Rightarrow R< 3\)
+) Nếu \(\left[{}\begin{matrix}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\end{matrix}\right.\) \(\Rightarrow R=3\)
c) Để \(R>4\Rightarrow\frac{x^2+x+1}{x}>4\) \(\Rightarrow x^2+x+1>4x\)
\(\Rightarrow x^2>3x-1\) \(\Rightarrow x>\frac{3x-1}{x}=3-\frac{1}{x}\)
Vậy \(x>3-\frac{1}{x}thìR>4\)
d) Thay x=1/4 vào R, ta có : \(R=\frac{\frac{1}{16}+\frac{1}{4}+1}{\frac{1}{4}}=\frac{21}{4}\)
đề bài mk cảm thấy nó sao sao í bạn ạ hoặc do mk tính sai
ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)
a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)
\(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)
\(=\frac{x^2+x+1}{x}\)
b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)
Vậy R > 3
Nếu \(x=400\Rightarrow\left\{{}\begin{matrix}799=2x-1\\403=x+3\\1198=3x-2\\1203=3\left(x+1\right)\end{matrix}\right.\)( * )
Thay ( * ) vào R , ta được :
\(R=\left(2x-1\right)x^2-3x^4+\left(x+3\right)x+\left(3x-2\right)x^3-3\left(x+1\right)\)
\(=2x^3-x^2-3x^4+x^2+3x+3x^4-2x^3-3x-3\)
\(=\left(2x^3-2x^3\right)+\left(3x^4-3x^4\right)+\left(x^2-x^2\right)+\left(3x-3x\right)-3\)
\(=-3\)
Vậy \(R=-3\) tại \(x=400\)
Cảm ơn bạn nha!