K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

Áp dụng bđt AM - GM:

\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi a = b = c.

Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.

3 tháng 1 2021

1) Trong he toa do Oxy, cho tam giac ABC co A(2;2), B(-5;3), C(-2;4). Goi H (x;y) la hinh chieu cua dinh A len duong thang BC. Tinh gia tri cua bieu thuc P = x2 + y2

                                                   Giải

- H là hình chiếu của A lên BC nên ta có: \(\overrightarrow{AH}.\overrightarrow{BC}=0\)

=> 3.(x-2) + 1.(y-2) = 0 <=> 3x + y =8 (1) 

- H nằm trên đoạn BC nên : B,H,C thẳng hàng.

=> BH = kBC 

=> \(\dfrac{x+5}{3}=\dfrac{y-3}{1}=x-3y=-14\)(2)

Từ (1) và (2) ta có hệ phương trình, giải hệ ta được: x=1, y=5.

Suy ra : x^2 + y^2 = 26 chọn B.

26 tháng 12 2020

Phương trình đường thẳng ON có dạng \(y=a'x+b'\left(d'\right)\)

\(\left\{{}\begin{matrix}b'=0\\a'+b'=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b'=0\\a'=3\end{matrix}\right.\Rightarrow y=3x\left(d'\right)\)

\(y=ax+b\left(d\right)\) đi qua \(E\left(2;-1\right)\Rightarrow2a+b=-1\left(1\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}a=3\\b\ne0\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow b=-7\)

\(\Rightarrow S=a^2+b^2=58\)

\(=6450-4000:\left(122-114\right)\)

\(=6450-4000:8\)

=6450-500=5950

NV
18 tháng 4 2020

\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)

\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)

\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)

\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)

\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)

\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)

4 tháng 4 2021

câu 2 b

gọi tgian tổ 1 và tổ 2 làm xong công việc lần lượt là x và y (giờ, x;y>0)

Một giờ tổ 1 làm được: \(\frac{1}{x}\)(công việc)

Một giờ tổ 2 làm được: \(\frac{1}{y}\)(công việc)

Một giờ hai tổ làm được: \(\frac{1}{12}\)(công việc) nên ta có phương trình:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

Nếu tổ 1 làm trong 2 giờ, tổ hai làm trong 7 giờ thì hai tổ làm xog công việc nên ta có pt:

\(\frac{2}{x}+\frac{7}{y}=1\)(2)

Từ (1) và (2),  ta co hệ phương trình:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{2}{x}+\frac{7}{y}=1\end{cases}}\)(tự giải ra nha)

............ vậy...........

~hoctot~

27 tháng 8 2021

có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)