K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

câu 2 b

gọi tgian tổ 1 và tổ 2 làm xong công việc lần lượt là x và y (giờ, x;y>0)

Một giờ tổ 1 làm được: \(\frac{1}{x}\)(công việc)

Một giờ tổ 2 làm được: \(\frac{1}{y}\)(công việc)

Một giờ hai tổ làm được: \(\frac{1}{12}\)(công việc) nên ta có phương trình:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

Nếu tổ 1 làm trong 2 giờ, tổ hai làm trong 7 giờ thì hai tổ làm xog công việc nên ta có pt:

\(\frac{2}{x}+\frac{7}{y}=1\)(2)

Từ (1) và (2),  ta co hệ phương trình:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{2}{x}+\frac{7}{y}=1\end{cases}}\)(tự giải ra nha)

............ vậy...........

~hoctot~

5 tháng 8 2016

1:

Giải:

Phân số chỉ 1 giờ bác Thành làm được là:

\(1:3=\frac{1}{3}\) ( công việc )

Phân số chỉ 1 giờ bác Mai làm được là:
\(1:4=\frac{1}{4}\) ( công việc)

Phân số chỉ 1 giờ cả hai bác làm được là:

\(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\) ( công việc )

Nếu hai bác cùng làm thì sau số giờ xong công việc là:

\(1:\frac{7}{12}=\frac{12}{7}\) ( giờ )

Vậy nếu cả hai bác cùng làm thì sau \(\frac{12}{7}\) giờ sẽ xong công việc

 

 

5 tháng 8 2016

2:

Giải:

Phân số chỉ 2 giờ người thứ nhất đi được là:

\(2:3=\frac{2}{3}\) ( quãng đường AB )

Phân số chỉ 2 giờ người thứ hai đi được là:

\(2:4=\frac{2}{4}=\frac{1}{2}\) ( quãng đường AB )

Phân số chỉ 5 km là:

\(\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\) ( quãng đường AB )

Quãng đường AB dài là:

\(5:\frac{1}{6}=30\) ( km )

Vậy quãng đường AB dài 30km

10 tháng 7 2019

Gọi t1 (giờ) là thời gian người thứ nhất sơn xong bức tường,

t2 (giờ) là thời gian người thứ hai sơn xong bức tường.

(Điều kiện: t1 > 0; t2 > 0)

+ Trong một giờ:

Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

+ Người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì họ sơn được 5/9 bức tường nên ta có: Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

+ Sau đó họ cùng làm việc với nhau trong 4 giờ nữa, nghĩa là người thứ nhất làm trong 7 + 4 = 11 giờ và người thứ hai làm trong 4 + 4 = 8 giờ.

Khi đó họ còn 1/18 bức tường chưa sơn nghĩa là họ đã sơn được 17/18 bức tường.

Ta có phương trình Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Ta có hệ phương trình Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10 , khi đó hệ phương trình trở thành Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Giải hệ phương trình trên ta được Giải bài 6 trang 70 sgk Đại số 10 | Để học tốt Toán 10

Vậy nếu mỗi người làm riêng thì người thứ nhất sơn xong bức tường trong 18 giờ, người thứ hai sơn xong bức tường trong 24 giờ.

16 tháng 5 2016

Gọi số công nhân ban đầu của tổ đó là x(x>2 x\(\in\)N)

Năng suất mỗi người phải làm theo dự định là: \(\frac{540}{x}\)(sản phẩm)

Do có 2 công nhân phải đi làm việc khác nên số người còn lại là: x-2 (người)

Năng suất thực tế mỗi công nhân phải làm là: \(\frac{540}{x-2}\)(sản phẩm)

Vì thực tế mỗi người phải làm thêm 3 sản phẩm nên ta có phương trình:

\(\frac{540}{x-2}\)-\(\frac{540}{x}\)=3

<=> 540x-540(x-2)=3.x(x-2)

<=> 540x -540x+1080=3\(x^2\)-6x

<=> 3\(x^2\)-6x-1080=0

<=> \(\left[\begin{array}{nghiempt}x=20\\x=-18\left(loại\right)\end{array}\right.\)

vậy ban đầu có 20 công nhân

 

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Bước 1: Gọi số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất lần lượt là \(x\) và \(y\) \(\left( {x,y \in \mathbb{N}} \right)\).

+ Theo giả thiết, thị trường tiêu thụ tối đa trong một ngày là 200 chiếc mũ kiểu thứ nhất nên  \(0 \le x \le 200\)

và 240 chiếc mũ kiểu thứ hai nên ta có \(0 \le y \le 240\)

+ Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong 1 giờ phân xưởng làm được 60 chiếc

=> Thời gian làm \(1\) chiếc mũ kiểu thứ hai là 1/60 (giờ)

=> Thời gian làm \(y\) chiếc kiểu hai là \(\frac{y}{{60}}\left( h \right)\)

+ Thời gian để làm ra một chiếc mũ kiểu thứ nhất nhiều gấp hai lần thời gian làm ra một chiếc mũ kiểu thứ hai 

=> thời gian làm 1 chiếc mũ kiểu thứ nhất là 2.1/60 = 1/30 (giờ)

=> Thời gian làm \(x\) chiếc kiểu thứ nhất là \(\frac{x}{{30}}\left( h \right)\)

+ Tổng thời gian làm một ngày không quá 8h nên ta có:

\(\frac{x}{{30}} + \frac{y}{{60}} \le 8\)

Bước 2: Lập hệ bất phương trình.

\(\left\{ \begin{array}{l}
0 \le x \le 200\\
0 \le y \le 240\\
\frac{x}{{30}} + \frac{y}{{60}} \le 8
\end{array} \right.\)

Bước 3: Biểu diễn miền nghiệm.

Miền biểu diễn miền nghiệm là phần không bị gạch, đa giác OABCD với O(0;0), A(0; 240), B(120; 240), C(200; 80), D(200; 0).

Bước 4: Tìm \(x\) và \(y\) để tiền lãi cao nhất.

Từ miền nghiệm ta thấy tiền lãi cao nhất tại khi điểm \(\left( {x;y} \right)\) là một trong các đỉnh của đa giác OABCD.

\(T = 24x + 15y\)

\(T\left( {0;240} \right) = 15.240 = 3600\) (nghìn đồng)

\(T\left( {120;240} \right) = 24.120+15.240 = 6480\) (nghìn đồng)

\(T\left( {200;80} \right) = 24.200+15.80 = 6000\) (nghìn đồng)

\(T\left( {200;0} \right) = 24.200 = 4800\)(nghìn đồng)

Vậy để tiền lãi thu được nhiều nhất, mỗi ngày xưởng cần sản xuất số mũ kiểu 1 là 120 và mũ kiểu 2 là 240 cái.

DẠNG 3: Giải bài toán bằng cách lập hệ phương trình Bài 1: Hai ô tô khởi hành cùng một lúc từ hai địa điểm A và B cách nhau 270 km đi ngược chiều nhau và gặp nhau sau 3 giờ. Tính vận tốc của mỗi ô tô, biết rằng vận tốc của ô tô đi từ A nhỏ hơn vận tốc của ô tô đi từ B là 10km/h. Bài 2. Một người đi quãng đường AB dài 225 km, với 3 giờ đi bằng ô tô và 1 giờ đi bằng xe máy. Tính vận tốc của xe ô tô và...
Đọc tiếp

DẠNG 3: Giải bài toán bằng cách lập hệ phương trình
Bài 1: Hai ô tô khởi hành cùng một lúc từ hai địa điểm A và B cách nhau 270 km đi ngược
chiều nhau và gặp nhau sau 3 giờ. Tính vận tốc của mỗi ô tô, biết rằng vận tốc của ô tô đi từ
A nhỏ hơn vận tốc của ô tô đi từ B là 10km/h.
Bài 2. Một người đi quãng đường AB dài 225 km, với 3 giờ đi bằng ô tô và 1 giờ đi bằng xe
máy. Tính vận tốc của xe ô tô và vận tốc của xe máy biết vận tốc của xe ô tô hơn xe máy là
15 km/h
Bài 3. Hai tổ cùng làm chung công việc thì xong trong 12 giờ. Nhưng khi thực hiện hai tổ
cùng làm chung 4 giờ thì tổ I phải đi làm việc khác, tổ II làm nốt công việc trong 10 ngày thì
xong. Hỏi mỗi tổ làm riêng thì sau bao lâu sẽ xong công việc
Bài 4. Một xí nghiệp đóng giầy dự định hoàn thành kế hoạch trong 26 ngày . Nhưng do cải
tiến kỹ thuật nên mỗi ngày đã vượt mức 6000 đôi giầy do đó chẳng những đã hoàn thành kế
hoạch đã định trong 24 ngày mà còn vượt mức 104 000 đôi giầy . Tính số đôi giầy phải làm
theo kế hoạch.
Bài 5. Trong hội trường có một số ghế băng, mỗi băng ghế quy định ngồi một số người như
nhau. Nếu bớt hai băng ghế và mỗi băng ghế ngồi thêm 1 người thì thêm được 8 chỗ, Nếu
thêm 3 băng ghế và mỗi băng ghế ngồi bớt đi 1 người thì giảm 8 chỗ. Tính số băng ghế trong

1
15 tháng 4 2020

anh (chị) nên đăng từng bài một thôi ! Đăng nhiều hoa hết cả mắt ....

31 tháng 12 2021

lm ăn kiểu này hay nhỉ 😂😂