Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
3A= 3.(1.2 + 2.3 + 3.4 + ..... +99.100)
3A=1.2.(3-0) + 2.3.(4-1) +.....+99.100.(101-98)
3A=1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .....+99.100.101
3A=99.100.101
A=99.100.101/3=333300
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101
= 99.100.101
A=333300
B= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3+ 4 + ... + 100)
= 333300 + 10100 - 5050
= 333300 + 5050
= 338350
A = 1*2 + 2*3 + 3*4 + ........+ 99*100
=>3A=1.2.3+2.3.3+3.4.3+...+99.100.3
<=> 3A =1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
<=> 3A =1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
<=> 3A = 99.100.101 = 999900
=> S = 333300
\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4
==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)
==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11
==> 4C= 8.9.10.11=7920
==> C= 7920 :4=1980
a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3
3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)
3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900 - 0
3A= 999900
==> A= 999900 : 3
==> A= 333300
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc =8,91
A=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
A=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)
A=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
A=9.(1/1-1/100)
A=9.99/100
A=891/100
A=8+91/100 ( viết dưới dạng hỗn số )
Vậy A=8+91/100
Nkớ k cho mink đó nha !!!
C=1.2+2.3+...+99.100
3C=1.2.3+2.3.3+...+99.100.3
3C=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
C=99.100.101 phần 3
C=333 300
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 333300
C = 1.2.3 + 2.3.4 + ... + 49.50.51
4C = 1.2.3.4 + 2.3.4.(4-1) + ... + 49.50.51.(52-48)
4c = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 49.50.51.52 - 48.49.50.51
4C = 49.50.51.52
4C = 6497400
C = 1624350
A = (13x+5a)+(21b-3b) = 18a+18b = 18.(a+b) = 18.100 = 1800
B = (1+100).100 : 2 = 5050
Tk mk nha
A=13a+21b+5a-3b
A=(13a+5a)+(21b-3b)
A=18a+18b
A=18.(a+b)
tha a+b+100ta được:
A=18.100
A=1800
B=1+2+3+...+99+100
số số hạng của tổng Blà(100-1):1+1=100
vậy B=(100+1).100:2=5050
C=1.2+2.3+3.4+...+99.100
3C=1.2.3+2.3.3+3.4.3+...+99.100.3
3C=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3C=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100)
3C=99.100.101-0.1.2
3C=999900-0
3C=999900
C=999900:3
C=333300