K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(A=27x^3+108x^2+144x+64\)

\(=\left(3x\right)^3+3.\left(3x\right)^2.4+3.3x.4^2+4^3\)

\(=\left(3x+4\right)^3=\left(3.32+4\right)^3=100^3=1000000\)

6 tháng 10 2021

A= (3x)+ 3.(3x)2.4 + 3.3x.42 + 43
A=(3x+4)3
biểu thức A tại x=32 là :
A=(3.32+4)3
A=1003
A=1000000
làm bài tốt nha !!!
 

6 tháng 10 2021

\(A=\left(3x+4\right)^3=\left(3\cdot32+4\right)^3=100^3=1000000\)

30 tháng 10 2016

A= (3x+4)^3

thay vào ta được : (3*32+4)^3=1000000

30 tháng 10 2016

- Kết quả là 1000000

- Đúng thì k hộ mình nhé :))

10 tháng 6 2023

\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\) ( Nhân phân phối )

\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)

\(=0+0x-8\)

\(=-8\)

Vậy biểu thức có giá trị không phụ thuộc vào giá trị của biến.

6 tháng 8 2017

a) A = ( x   +   2 ) 3  nên x = 48 thì A = 125000.

b) B = ( 3 x   –   2 y ) 3  nên x = 4; y = 6 thì B = 0.

c) C = x 2 − y − 2 3 nên x = 206; y  1 thì C = 10 6 .

a: A=(2x-1)^3

Khi x=5,5 thì A=(2*5,5-1)^3=10^3=1000

b: B=27x^3+54x^2+36x+7

=(3x)^3+3*(3x)^2*2+3*3x*2^2+2^3-1

=(3x+2)^3-1

=(-8+2)^3-1

=(-6)^3-1=-217

3 tháng 8 2023

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

3 tháng 8 2023

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

9 tháng 7 2018

\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)

\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

9 tháng 7 2018

\(x^2+4y^2+2x-y+2\)

\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)

\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)

Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)

Tham khảo nhé~