K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

(2x+3)(2x-3) - (2x+1)^2

<=> (2x)^2 - 9 - (2x)^2 + 4x + 1
<=> 4x - 8
nếu x = 1/2
=> 4*1/2 - 8
<=> 2 - 8
<=> -6

4 tháng 8 2021

give me a like or die noob

31 tháng 10 2021

\(E=33\left(\dfrac{2}{3}x-1\right)+\left(15x^2-10x\right):\left(-5x\right)-\left(3x-1\right)\)

\(=22x-33-3x+2-3x+1\)

\(=16x-30\)

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

28 tháng 11 2018

a) Rút gọn A = ( 5 m ) 2   =   25 m 2 . Với m = 2 Þ A = 100.

b) Rút gọn B = -12x + 26. Với x = 10 Þ B = -94.

12 tháng 11 2023

Ta có: \(\dfrac{x^2-2x-3}{x^2+2x+1}=\dfrac{x^2+x-3x-3}{\left(x+1\right)^2}=\dfrac{x\left(x+1\right)-3\left(x+1\right)}{\left(x+1\right)^2}\)

\(=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x+1\right)^2}=\dfrac{x-3}{x+1}\left(dk:x\ne-1\right)\) (1)

Với \(x\ne-1\), ta có:

\(3x-1=0\Rightarrow3x=1\) \(\Rightarrow x=\dfrac{1}{3}\left(tm\right)\)

Thay \(x=\dfrac{1}{3}\) vào (1), ta được:

\(\dfrac{\dfrac{1}{3}-3}{\dfrac{1}{3}+1}=\left(\dfrac{1}{3}-3\right):\left(\dfrac{1}{3}+1\right)\)

\(=-\dfrac{8}{3}:\dfrac{4}{3}=-\dfrac{8}{3}\cdot\dfrac{3}{4}=-2\)

Vậy: ...

1 tháng 7 2021

\(a)\)

\(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(4x-6\right)+xy\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)

\(=\left(2x+3-2x+3\right)^2+xy\)

\(=6^2+2\left(-1\right)\)

\(=36-2\)

\(=34\)

\(b)\)

\(\left(x-2\right)^2-\left(x-1\right)\left(x+1\right)-x\left(1-x\right)\)

\(=x^2-4x+4-x^2+1-x+x^2\)

\(=x^2-5x+5\)

Thay \(x=-2\)vào ta có:

\(\left(-2\right)^2-5\left(-2\right)+5\)

\(=4+10+5\)

\(=19\)

3 tháng 12 2018

thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)

Bài 2 :

a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)

\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)

\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{8}{5}\)

=> giá trị của B ko phụ thuộc vào biến x

3 tháng 12 2018

bài 1

=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)

=\(\left(2x+1+2x-1\right)^2\)

=\(\left(4x\right)^2\)

=\(16x^2\)

Tại x=100 thay vào biểu thức trên ta có:

16*100^2=1600000

17 tháng 10 2021

a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)

\(=-4.\dfrac{1}{4}+10=9\)

b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)

\(=\left(-2\right).\left(32-32\right)=0\)

17 tháng 10 2021

a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)

\(=4x^2-4x+1+9-4x^2\)

\(=-4x+10\)

\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)