K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

\(E=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]\)

\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x\left(x+1\right)}{3x}\right)\right]\)

\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(1-3x\right)}{3x}\right]\)

\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right]=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right]\)

\(=\frac{x-1}{x}:2=\frac{x-1}{2x}\)hay \(E=\frac{x-1}{2x}\)

7 tháng 10 2021

a. (x2 + 4x + 4)

b. (1 - 4x + 4x2)

c. 9x2 - 1

d. x3 + 9

e. x3 + 3x24 + 19x + 64

f. x3 - 8

15 tháng 10 2021

a: \(2x\left(x^2-3x+1\right)=2x^3-6x^2+2x\)

b: \(\left(x+2\right)^2-x^2=4x+4\)

c: \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=27\)

22 tháng 6 2016

a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)

b)  \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)

                                                          \(=6x^2-3x+4x-6+2x\)

                                                            \(=6x^2+3x-6\)

c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)

                                                  \(=x^3+6x^2+4x-15\)

d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)

                                                \(=x^3+1\)

e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)

                                                       \(=10x^4+4x^3-15x^2-11x-2\)

f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)

                                                 \(=x^3-6x^2+11x-12\)

22 tháng 12 2016

\(x^2\left(x-2x^3\right)=x^3-2x^5\)

\(\left(x^2+1\right)\left(5-x\right)=5x^2-x^3+5-x\)

\(\left(x-2\right)\left(x^2+3x-4\right)=x^3+3x^2-4x-2x^2-6x+8=x^3+x^2-10x+8\)

\(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2-5x+3x^2+9x-15=x^3+6x^2+4x-15\)

\(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)

a: =>9x^2+12x+4-9x^2+12x-4=5x+38

=>24x=5x+38

=>19x=38

=>x=2

e: =>x^3+1-2x=x^3-x

=>-2x+1=-x

=>-x=-1

=>x=1

f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1

=>12x-9=3x+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

=>-3x+3=3x-9

=>-6x=-12

=>x=2

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

26 tháng 3 2020

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

28 tháng 7 2021

có sai đecc ko bạn.......gianroi

b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Rightarrow x^2-9x+20-x^2+x+2=7\)

\(\Rightarrow-8x+22=7\)

\(\Rightarrow-8x=-15\)

\(\Rightarrow x=\frac{15}{8}\)

c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)

\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)

\(\Rightarrow17x=-11\)

\(\Rightarrow x=-\frac{11}{17}\)

d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)

\(\Rightarrow6x=-27\)

\(\Rightarrow x=-\frac{27}{6}\)

\(\Rightarrow x=-\frac{9}{2}\)

e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)

\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)

\(\Rightarrow-4=x-4\)

\(\Rightarrow x=0\)

9 tháng 7 2019

b)    (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8

c)    (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17

d)    (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27

e)    (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)