K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Thực hiện phép tính:a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)Bài 2: Tìm x, biết:a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị...
Đọc tiếp

Bài 1: Thực hiện phép tính:

a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)

c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)

e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)

Bài 2: Tìm x, biết:

a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13

c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8

Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3     

b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5 

Bài 4: Tính giá trị của biểu thức

a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10

b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5

3
17 tháng 9 2021

\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)

 

17 tháng 9 2021

\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2

a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)

b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)

c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)

\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)

d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)

18 tháng 12 2021

Bài 1:

\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)

Bài 2:

\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

11 tháng 7 2021

\(\left(x^2+3\right)\left(3-x^2\right)\)

\(\left(x^2+3\right)\left(-x^2+3\right)\)

\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2-3x^2+9\)

\(-x^2.x^2+9\)

11 tháng 7 2021

\(\left(2x+5\right)\left(2x-5\right)\)

\(2x\left(2x-5\right)+5\left(2x-5\right)\)

\(4x^2-10x+5\left(2x-5\right)\)

\(4x^2-10x+10x-25\)

\(4x^2-25\)

21 tháng 7 2021

a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28

b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10

c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x

d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1