K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2017

Chọn D.

Có y’ = x’sin2x + x.(sin2x)’ = sin2x + 2xcos2x

y’’ = (sin2x)’ + (2x)’cos2x + 2x(cos2x)’ = 4cos2x – 4xsin2x

y’’’ = 4(cos2x)’ – (4x)’sin2x – 4x(sin2x)’ = -8sin2x – 4sin2x – 8cos2x

= -12sin2x – 8cos2x.

2 tháng 6 2017

Ta có 

y’’ = -2cos2x y’’’ = 4sin2x.

10 tháng 8 2018

Chọn C.

y = x4 - sin2x

y’ = 4x3 – 2cos2x y’’ = 12x2 + 4sin2x

y’’’ = 24x + 8cos2x y(4) = 24 – 16sin2x

21 tháng 9 2018

Chọn D.

10 tháng 2 2017

8 tháng 4 2017

y ' = 2 2 − 3 x 2 x + 1 . 2 − 3 x 2 x + 1 ' = 2 2 − 3 x 2 x + 1 . − 3 2 x + 1 − 2 2 − 3 x 2 x + 1 2 =    2 2 − 3 x 2 x + 1 . − 7 2 x + 1 2 = − 14 2 x + 1 2 . 2 − 3 x 2 x + 1

Chọn đáp án A

15 tháng 11 2019

Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vì Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11 nên tồn tại α thỏa mãn 

Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11

(*) ⇔ cos α.cos 2x + sin α. sin 2x = 1

Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có họ nghiệm 

Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

với α thỏa mãn Giải bài 5 trang 37 sgk Đại số 11 | Để học tốt Toán 11

9 tháng 11 2019

Chọn D.

26 tháng 5 2017

lim x → π 3   2 sin 2 x   +   sin x   -   1 2 sin 2 x   -   3 sin x   +   1   =   1   +   3 5   -   3 3

18 tháng 5 2017

a) cosx – √3sinx = √2 ⇔ cosx – tan π/3sinx = √2 ⇔ cos π/3cosx – sinπ/3sinx = √2cosπ/3 ⇔ cos(x +π/3) = √2/2 ⇔ b) 3sin3x – 4cos3x = 5 ⇔ 3/5sin3x – 4/5cos3x = 1. Đặt α = arccos thì phương trình trở thành cosαsin3x – sinαcos3x = 1 ⇔ sin(3x – α) = 1 ⇔ 3x – α = π/2 + k2π ⇔ x = π/6 +α/3 +k(2π/3) , k ∈ Z (trong đó α = arccos3/5). c) Ta có sinx + cosx = √2cos(x – π/4) nên phương trình tương đương với 2√2cos(x – π/4) – √2 = 0 ⇔ cos(x – π/4) = 1/2 ⇔ d) 5cos2x + 12sin2x -13 = 0 ⇔ Đặt α = arccos5/13 thì phương trình trở thành cosαcos2x + sinαsin2x = 1 ⇔ cos(2x – α) = 1 ⇔ x = α/2 + kπ, k ∈ Z (trong đó α = arccos 5/13).