Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)
áp dụng tính chất DTSBN ta có
\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)
\(+\frac{a}{-3}=>a=-6\)
\(+\frac{b}{4}=2=>b=8\)
\(+\frac{c}{6}=2=>c=12\)
Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)
Áp dụng tính chất dãy tỉ số băng nhau:
\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)
Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)
A= 4+2^2+2^3+....+2^2015
\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016
\(\Rightarrow\) 2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015
\(\Rightarrow\)A=8+2^2016 - 4 - 2^2
\(\Rightarrow\)A=2^2016
Vậy A là lũy thừa của 2
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)
= 1 + -1 + 1/64
= 0 +1/64
= 1/64
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
a) 2,04:(-3,12)
= 51/25:(-78/25)
= -17/26
b) (-1\(\frac{1}{2}\)):1,25
= (-3/2):5/4
= -6/5
c) 4:5\(\frac{3}{4}\)
= 4:23/4
= 16/23
d) 10\(\frac{3}{7}\):5\(\frac{3}{14}\)
= 73/7:73/14
= 2
CHÚC BẠN HỌC TỐT
a) \(A=4+4^2+4^3+...+4^{200}\)
\(4A=4^2+4^3+...+4^{201}\)
\(4A-A=3A=4^{201}-4\)
\(A=\frac{4^{201}-4}{3}\)
b) \(B=1+5+5^2+...+5^{2017}\)
\(5B=5+5^2+5^3+...+5^{2018}\)
\(5B-B=4B=5^{2018}-1\)
\(B=\frac{5^{2018}-1}{4}\)
c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)
\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)
\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)
T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^