Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\\ =\left(\sin^2\alpha\right)^2+2\sin^2\alpha\cdot\cos^2\alpha+\left(\cos^2\alpha\right)^2\\ =\left(\sin^2\alpha+\cos^2\alpha\right)^2\\ =1^2=1\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)\\ =\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\sin^2\alpha\)
\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha\\ =\cos^2\alpha+\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\cos^2\alpha+\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\cos^2\alpha+\sin^2\alpha\\ =1\)
\(\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-1\right)\\ =\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-\sin^2\alpha-\cos^2\alpha\right)\\ =\tan^2\alpha\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\)
=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a
=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa
=sina+cosa-cosa
=sina
- sin 45 = cos 45 => sin 45 - cos 45 =0 => A =0
- sin 45 = cos 45 ; tan 45 = cot 45 => \(\frac{sina-tana}{cota-cosa}=\frac{sina-tana}{tana-sina}=-1\)
a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)
\(=sin^2\alpha+cos^2\alpha=1\)
b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)
c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)
\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)
a, = \(\sin^2\alpha+2\sin\alpha.\cos\alpha+\cos^2\alpha\)+ \(\sin^2\alpha-2\sin\alpha\cos\alpha+\cos^2\alpha\)
= \(2\sin^2\alpha+2\cos^2\alpha\)= 4
b,=\(\sin\alpha\cos\alpha\)(\(\frac{\sin\alpha}{\cos\alpha}+\frac{\cos\alpha}{\sin\alpha}\))
= \(\sin\alpha\cos\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha\cos\alpha}\)
=1
#mã mã#