K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

L=22+22.22+22.32+...+22.492+22.502=22.(1+22+32+...+492+502)

Đặt biểu thức trong dấu ngặc là A

A=1+2.(3-1)+3(4-1)+...+49(50-1)+50(51-1)=1+2.3-.2+3.4-3+...+49.50-49+50.51-50

A=1+(2.3+3.4+4.5+...+49.50+50.51)-(2+3+4+...+49+50)

Đặt B=2.3+3.4+4.5+...+49.50+50.51

3B=2.3.3+3.4.3+4.5.3+...+49.50.3+50.51.3=2.3.(4-1)+3.4(5-2)+4.5.(6-3)+...+49.50.(51-48)+50.51(52-49)

3B=-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-...-48.49.50+49.50.51-49.50.51+50.51.52=50.51.52-1.2.3 => B=(50.51.52-1.2.3)/3

Đặt C=2+3+4+...+49+50 đây là cấp số cộng áp dụng công thức tính tổng S của 1 cấp số cộng sẽ tính được C

=> L=22.A=22.(1+B-C)

Bạn tự làm nốt nhé

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

28 tháng 1 2018

A=100+98+96+...+29795...1A=100+98+96+...+2−97−95−...1

A=100+(9897)+(9695)+...(21)A=100+(98−97)+(96−95)+...(2−1)

A=100+1+1+1+...+1A=100+1+1+1+...+1 

A=100+1.49A=100+1.49

A=100+49A=100+49

A=149

a, 100 + 98 + 96 + ... + 2 - 9 7 - 95 - .. -1
=  100 + (98 - 97) + (96-95) + ... +  + ... + (2 - 1)
= 100 + 1 + 1 + 1 +.. +1
= 100 + 1 x 49
= 100 + 49 
= 149
b , 1 + 2 - 3 - 4 + 5 + 6 - .... -299 - 330 +301 + 302 
 =( 1 + 2 - 3) + ( -4 + 5 + 6 -7 )  +... +(298 - 299 -300 +301 ) + 302
= 0 + 0 + .. + 0 + 302
= 302 

26 tháng 2 2020

204 mình ko chắc đâu nhé

26 tháng 2 2020

Ta có A= (1.2).(2.2) + (2.2).(2.3)+(2.3).(2.4)+...+(2.49).(2.50)+(2.50).(2.51)

A=4. (1.2) + 4.(2.3) + 4. (3.4) + ... + 4.(49.50) + 4. (50.51)

A=4. (1.2+2.3+3.4+4.5+ ...+ 49.50+50.51)  

Tính B=1.2+2.3+3.4+4.5+ ...+ 49.50+50.51

3.B= 3. (1.2+2.3+3.4+4.5+ ...+ 49.50+50.51)

3B= 1.2.3+2.3.3+3.4.3+4.5.3+ ...+ 49.50.3+50.51.3

3B= 1.2(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+ ...+ 49.50.(51-48)+50.51.(52-49)

3B=1.2.3-1.2.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+50.51.52-49.50.51

3B=50.51.52

B= 44200

A=4.44200=176800

Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)

=100

Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)

\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)

\(=\dfrac{8}{\dfrac{1}{5}}=40\)

\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000