Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
L=22+22.22+22.32+...+22.492+22.502=22.(1+22+32+...+492+502)
Đặt biểu thức trong dấu ngặc là A
A=1+2.(3-1)+3(4-1)+...+49(50-1)+50(51-1)=1+2.3-.2+3.4-3+...+49.50-49+50.51-50
A=1+(2.3+3.4+4.5+...+49.50+50.51)-(2+3+4+...+49+50)
Đặt B=2.3+3.4+4.5+...+49.50+50.51
3B=2.3.3+3.4.3+4.5.3+...+49.50.3+50.51.3=2.3.(4-1)+3.4(5-2)+4.5.(6-3)+...+49.50.(51-48)+50.51(52-49)
3B=-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-...-48.49.50+49.50.51-49.50.51+50.51.52=50.51.52-1.2.3 => B=(50.51.52-1.2.3)/3
Đặt C=2+3+4+...+49+50 đây là cấp số cộng áp dụng công thức tính tổng S của 1 cấp số cộng sẽ tính được C
=> L=22.A=22.(1+B-C)
Bạn tự làm nốt nhé
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
A=100+98+96+...+2−97−95−...1
A=100+(98−97)+(96−95)+...(2−1)
A=100+1+1+1+...+1
A=100+1.49
A=100+49
A=149
a, 100 + 98 + 96 + ... + 2 - 9 7 - 95 - .. -1
= 100 + (98 - 97) + (96-95) + ... + + ... + (2 - 1)
= 100 + 1 + 1 + 1 +.. +1
= 100 + 1 x 49
= 100 + 49
= 149
b , 1 + 2 - 3 - 4 + 5 + 6 - .... -299 - 330 +301 + 302
=( 1 + 2 - 3) + ( -4 + 5 + 6 -7 ) +... +(298 - 299 -300 +301 ) + 302
= 0 + 0 + .. + 0 + 302
= 302
Ta có A= (1.2).(2.2) + (2.2).(2.3)+(2.3).(2.4)+...+(2.49).(2.50)+(2.50).(2.51)
A=4. (1.2) + 4.(2.3) + 4. (3.4) + ... + 4.(49.50) + 4. (50.51)
A=4. (1.2+2.3+3.4+4.5+ ...+ 49.50+50.51)
Tính B=1.2+2.3+3.4+4.5+ ...+ 49.50+50.51
3.B= 3. (1.2+2.3+3.4+4.5+ ...+ 49.50+50.51)
3B= 1.2.3+2.3.3+3.4.3+4.5.3+ ...+ 49.50.3+50.51.3
3B= 1.2(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+ ...+ 49.50.(51-48)+50.51.(52-49)
3B=1.2.3-1.2.0+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+50.51.52-49.50.51
3B=50.51.52
B= 44200
A=4.44200=176800
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000