Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7 (7 / 2.9 + 7 / 9.16 + .......... + 7/65.72)
A=7( 1/2 - 1/9 +1/9 - 1/16 +......+1/65 - 1/72)
A= 7 ( 1/2 -1/72)
A= 7 . 35/72
A=245/72
\(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7}{16.23}+.....+\frac{7^2}{65.72}\)
=\(7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{65}-\frac{1}{72}\right)\)
=\(7.\left(\frac{1}{2}-\frac{1}{72}\right)\)
=\(7.\frac{35}{72}\)
=\(\frac{245}{72}\)
Đặt \(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+\frac{7^2}{23.30}\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=\frac{49}{15}\)
đặt biểu thức là B
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(B=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.....+\frac{1}{23}-\frac{1}{30}\right)\)
\(B=7.\left(\frac{1}{2}-\frac{1}{30}\right)=7.\frac{7}{15}=\frac{49}{15}\)
Ai thấy đúng thì ủng hộ nha !!!
\(B=\dfrac{49}{2\cdot9}+\dfrac{49}{9\cdot16}+\dfrac{49}{16\cdot23}+...+\dfrac{49}{65\cdot72}\)
\(B=\dfrac{49}{7}\cdot\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\right)\)
\(B=7\cdot\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(B=7\cdot\left(\dfrac{36}{72}-\dfrac{1}{72}\right)\)
\(B=7\cdot\dfrac{35}{72}\)
\(B=\dfrac{\left(7\cdot35\right)}{72}\)
\(B=\dfrac{245}{72}\)
\(\dfrac{B}{7}=\dfrac{7}{2\cdot9}+\dfrac{7}{9\cdot16}+\dfrac{7}{16\cdot23}+...+\dfrac{49}{65\cdot72}\\ \dfrac{B}{7}=\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{23}+...+\dfrac{1}{65}-\dfrac{1}{72}\\ \dfrac{B}{7}=\dfrac{1}{2}-\dfrac{1}{72}\\ \dfrac{B}{7}=\dfrac{35}{72}\\ B=\dfrac{35}{72}\times7\\ B=\dfrac{245}{72} \)
7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101
= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)
= 7/2 . (1 - 1/101)
= 7/2 . 100/101
= 350/101
\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)
\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
Bài 1 \(F=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{7.8}-\frac{1}{8.9}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{9.10}\)\(=\frac{44}{90}\)
\(F=\frac{11}{45}\)
Vậy \(F=\frac{11}{45}\)
Bài 2 :
\(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow\)\(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(\Rightarrow\)\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}< B< \frac{1}{2.3}+..+\frac{1}{8.9}\)
\(\Rightarrow\)\(\frac{1}{3}-\frac{1}{10}< B< \frac{1}{2}-\frac{1}{9}\)
\(\Rightarrow\)\(\frac{7}{30}\)\(< \frac{7}{18}\left(đpcm\right)\)
Hết nha bn.Mk ik ngủ.Chúc bạn học tốt
\(=\frac{\frac{28}{42}+\frac{12}{42}-\frac{3}{42}}{\frac{14}{14}+\frac{6}{14}-\frac{3}{14}}=\frac{\frac{37}{42}}{\frac{17}{14}}=\frac{37}{42}:\frac{17}{14}=\frac{37}{51}\)
\(\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{1+\frac{3}{7}-\frac{3}{14}}=\frac{1-\frac{1}{3}+\frac{2}{7}-\frac{1}{14}}{1+\frac{2}{7}+\frac{1}{7}-\frac{2}{14}-\frac{1}{14}}=\frac{-\frac{1}{3}+1+\frac{2}{7}-\frac{1}{14}}{1+\frac{2}{7}-\frac{1}{14}}=\frac{-\frac{1}{3}}{1+\frac{2}{7}-\frac{1}{14}}+\frac{1+\frac{2}{7}-\frac{1}{14}}{1+\frac{2}{7}-\frac{1}{14}}\)\(=\frac{-\frac{1}{3}}{\frac{14+4-1}{14}}+1=\frac{-\frac{1}{3}}{\frac{17}{14}}+1=-\frac{1}{3}\times\frac{14}{17}+1=-\frac{14}{51}+1=\frac{37}{51}\)
Chúc bạn học tốt
Ta có:
C = \(\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+...+\frac{7^2}{65.72}\)
=> C = \(7.\left(\frac{7}{2.9}+\frac{7}{9.16}+\frac{7}{16.23}+...+\frac{7}{65.72}\right)\)
=> C = \(7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+...+\frac{1}{65}-\frac{1}{72}\right)\)
=> C = \(7.\left(\frac{1}{2}-\frac{1}{72}\right)\)
=> C = \(7.\frac{35}{72}=\frac{245}{72}\)
Nhìn kĩ là ra thôi :
\(\frac{7^2}{2.9}+\frac{7^2}{9.16}+...+\frac{7^2}{65.72}\)
= \(7\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right)\)
= \(7\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right)\)
= \(7\left(\frac{1}{2}-\frac{1}{72}\right)\)
= \(7.\frac{35}{72}=3\frac{29}{72}\)