Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a Để \(\frac{x+1}{2}\)=\(\frac{8}{x+1}\)
\(\Rightarrow\)x+1.(x+1)=2.8=16
\(\Rightarrow\)x+1(x+1)=4.4
suy ra x+1=4
x=4-1
x=3
a, \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\\\frac{1}{x}-\frac{2}{3}=\frac{-1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{11}{12}\\\frac{1}{x}=\frac{5}{12}\end{cases}\Rightarrow\orbr{\begin{cases}11x=12\\5x=12\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}}\)
b, \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
Đặt S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\)
2S = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{8.9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
2S = \(\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
S = \(\frac{22}{45}:2=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}\Rightarrow x=\frac{23}{11}\)
a/ (1/x -2/3)2=1/16=(1/4)2
Có 2 trường hợp:
+/ 1/x -2/3= - 1/4
<=> 1/x =2/3 -1/4 = 5/12
=> x1=12/5
+/ 1/x - 2/3 =1/4
<=> 1/x = 2/3 +1/4= 11/12
=> x2=12/11
b/ Ta có:
2/(1.2.3)=1/(1.2) - 1/2.3 ; 2/(2.3.4)=1/2.3 -1/3.4 ; ...; 2/(8.9.10)=1/8.9 -1/9.10
=> (1/1.2.3 + 1/2.3.4 +...+1/8.9.10)=23/45
<=> (1/1.2 -1/2.3 +1/2.3 -1/3.4 +...+1/8.9-1/9.10).x/2=23/45
<=> (1/1.2 -1/9.10).x/2 =23/45
<=> x.11/45=23/45
=> x=23/11
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+..........+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{1.2}-\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{45}{90}-\frac{1}{90}\)
\(=\frac{44}{90}\)
\(=\frac{22}{45}\)
a)\(19\frac{5}{8}:\frac{7}{12}-15\frac{1}{4}:\frac{7}{12}\)
=(\(19\frac{5}{8}-15\frac{1}{4}\)):\(\frac{7}{12}\)
=(\(19\frac{10}{16}-15\frac{4}{16}\)):\(\frac{7}{12}\)
=\(4\frac{6}{16}:\frac{7}{12}\)
=\(\frac{35}{8}:\frac{7}{12}\)
=\(\frac{35}{8}\cdot\frac{12}{7}\)
=\(\frac{15}{2}\)
b)2/5*1/3-2/15:1/5+3/5*1/3
=2/15-2/3+1/5
=-8/15+1/5
=-1/3
aidi qua dong tinh nho h chom minh nhe
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
Bài 1 \(F=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{7.8}-\frac{1}{8.9}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{9.10}\)\(=\frac{44}{90}\)
\(F=\frac{11}{45}\)
Vậy \(F=\frac{11}{45}\)
Bài 2 :
\(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow\)\(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(\Rightarrow\)\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}< B< \frac{1}{2.3}+..+\frac{1}{8.9}\)
\(\Rightarrow\)\(\frac{1}{3}-\frac{1}{10}< B< \frac{1}{2}-\frac{1}{9}\)
\(\Rightarrow\)\(\frac{7}{30}\)\(< \frac{7}{18}\left(đpcm\right)\)
Hết nha bn.Mk ik ngủ.Chúc bạn học tốt