K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Đặt S là biểu thức trên

\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{97.99}\right)\)

\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(\Rightarrow S=\frac{1}{2}\left(\frac{99}{99}-\frac{1}{99}\right)\)

\(\Rightarrow S=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow S=\frac{49}{99}\)

Vậy biểu thức trên có giá trị là \(\frac{49}{99}\)

24 tháng 6 2018

\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{97\times99}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+....+\frac{1}{97\times99}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}\times\frac{98}{99}\)

\(=\frac{49}{99}\)

15 tháng 1 2017

= 1-1/3 + 1/3-1/5+.......+1/97-1/99

=  1 - 1/99

= 98/99

15 tháng 8 2017

sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|

31 tháng 8 2017

\(=\frac{6}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-............+\frac{1}{97}-\frac{1}{99}\right).\\ \)

\(=\frac{6}{2}\left(1-\frac{1}{97}\right)\)

tới đây tính máy là ra luôn

6 tháng 8 2015

\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

8 tháng 8 2023

a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)

Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=\dfrac{1}{100}\)

\(\Rightarrow x+1=100\)

\(x=100-1\)

\(x=99\)

8 tháng 8 2023

câu b thiếu kết quả đúng không bn?

2 tháng 7 2018

\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)

\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)

\(=\frac{3}{2}.\frac{2018}{2019}\)

\(=\frac{1009}{673}\)

\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)

\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)

\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)

2 tháng 11 2019

\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)

\(=2.\left(1-\frac{1}{11}\right)\)

\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)

\(=2.\frac{10}{11}\)

\(=\frac{20}{11}\)

31 tháng 12 2022

14,26651106

25 tháng 7 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(\Leftrightarrow A=\frac{3}{2}.\frac{100}{101}\)

\(\Leftrightarrow A=\frac{150}{101}\)

26 tháng 7 2017

A=3/1x3+3/3x5+3/5x7+.....+3/99x101

A=3x(1/1x3+1/3x5+1/5x7+.....+1/99x101)

A=3/2x(2/1x3+2/3x5+2/5x7+.....+2/99x101)

A=3/2x(1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

A=3/2x(1/1-1/101)

A=3/2x(101/101-1/101)

A=3/2x100/101

A=150/101.

Vậy A=150/101