K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

8 tháng 2 2018

ai biết trả lời nhanh giúp mình nhé

29 tháng 2 2016

\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+....+\frac{1}{200^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.100\right)^2}\)

\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{100^2}\)

\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\right)=\frac{1}{4}.A\)

\(\Rightarrow\frac{A}{B}=\frac{A}{\frac{1}{4}A}=\frac{A}{\frac{A}{4}}=A.\frac{4}{A}=4\)

15 tháng 10 2016

\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2B-B=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{3^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\right)\)

\(B=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(2B=2+\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{100}{2^{99}}\)

\(2B-B=\left(2+\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\right)\)

\(B=2+\frac{3}{2}+\frac{1}{2^2}-\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{1}{2^{99}}+\frac{100}{2^{100}}\)

\(B=2+\frac{3}{2}+\frac{1}{4}-\frac{200}{2^{100}}-1-\frac{3}{8}-\frac{2}{2^{100}}+\frac{100}{2^{100}}\)

\(B=\frac{19}{8}-\frac{102}{2^{100}}=\frac{19}{8}-\frac{51}{2^{99}}\)

13 tháng 3 2016

B-A=(1*3-1*2)+(2*4-2*3)+...+(100*102-100*101)

B-A=1+2+...+100

B-A=5050