Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=mấy vậy bn ? Nếu A=\(\frac{x^3-x^2+0,3y}{x^2-y}\) thì lm thế này, nếu k pải thì lm tương tự
Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
y là số nguyên âm lớn nhất => y = -1
Với \(x=\frac{1}{2};y=-1\) thì \(A=\frac{\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^2+0,3.\left(-1\right)}{\left(\frac{1}{2}\right)^2-\left(-1\right)}=\frac{\frac{1}{8}-\frac{1}{4}-0,3}{\frac{1}{4}+1}=\frac{\frac{-17}{40}}{\frac{5}{4}}=\frac{-17}{50}\)
Với \(x=\frac{-1}{2};y=-1\) thì \(A=\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{-1}{2}\right)^2+0,3.\left(-1\right)}{\left(\frac{-1}{2}\right)^2-\left(-1\right)}=\frac{\frac{-1}{8}-\frac{1}{4}-0,3}{\frac{1}{4}+1}=\frac{\frac{-27}{40}}{\frac{5}{4}}=\frac{-27}{50}\)
Vậy....
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)