Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức (4) ta có:
[a + (-b)]3 = a3 + 3a2 (-b) + 3a(-b)2 + (-b)3
= a3 - 3a2b + 3ab2 - b3
(a - b)(a2 + ab + b2 ) = a(a2 + ab + b2 ) - b(a2 + ab + b2 )
= a3 + a2 b + ab2 - ba2 - ab2 - b3
= a3 - b3
(a + b)(a2 – ab + b2 ) = a(a2 – ab + b2 ) + b(a2 – ab + b2 )
= a3 – a2b + ab2 + ba2 – ab2 + b3
= a3 + b3
Áp dụng hằng đẳng thức (1) ta có:
[a + (-b)]2 = a2 + 2.a.(-b) + (-b)2 = a2 - 2ab + b2
(a + b)(a – b) = a(a – b) + b(a – b)
= a2 - ab + ba - b2
= a2 - b2
2) (2x - 3y)2
= (2x)2 - 2.2x.3y + ( 3y)2
= 4x2 - 12xy + 9y2
t i c k nhé!!!! 4645757878769698700795783537742637645756756756765
1) giả sử a = 3x ; b = 5y ta có:
[3x + (-2y)]2
= (3x)2 + 2.3x.(-2y) + (-2y)2
= 9x2 - 12xy + 4y2
= (3x - 2y)2
2) (2x - 3y)2
= (2x)2 - 2.2x.3y + (3y)2
= 4x2 - 12xy + 9y2
t i c k nha!!!!! 576767868658769769765474745735733462464575687687685789587
Ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
Dấu = xảy ra khi .... Làm tiếp nhé
ta có: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)=> \(\frac{bx^4+ay^4}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\) (vì x^2 +y^2 =1)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(ab\left(x^4+2x^2y^2+y^4\right)\)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(abx^4+2abx^2y^2+aby^4\)
=> \(b^2x^4-2abx^2y^2+a^2y^4=0\)
=>\(\left(bx^2-ay^2\right)^2=0\)=>\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
=> \(\frac{x^{2012}}{a^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\) và \(\frac{y^{2012}}{b^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\)
=>\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
Lời giải:
$\frac{a^2+b^2}{2}-ab=\frac{a^2+b^2-2ab}{2}=\frac{(a-b)^2}{2}\geq 0$ với mọi $a,b$
$\Rightarrow \frac{a^2+b^2}{2}\geq ab$ (đpcm)
Ta có : \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
a + b)(a + b)2 = (a + b)(a2 + 2ab + b2 )
= a(a2 + 2ab + b2 ) + b(a2 + 2ab + b2 )
= a3 + 2a2 b + ab2 + ba2 + 2ab2 + b3
= a3 + 3a2 b + 3ab2 + b3