Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{9702}+\frac{2}{9900}=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
=> \(A=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{100}\right)=1+2.\frac{49}{100}=1+\frac{49}{50}=\frac{99}{50}\)
Đáp số: \(A=\frac{99}{50}\)
Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)\)
\(=99-\frac{99}{100}< 99\)
\(\Rightarrow A< 99\)
A= 5.(1/2 + 1/6+1/12+1/20+...+1/9506+1/9702+1/9900)
= 5. (1/1.2 + 1/2.3+1/3.4+1/4.5+...1/97.98+1/98.99+1/99.100)
= 5 .(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/97-1/98+1/98-1/99+1/99-1/100)
= 5.(1-1/100)=5. 99/100=99/20
\(A=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{100}\right)=1+2.\frac{49}{100}=1+\frac{49}{50}\)
\(A=\frac{99}{50}\)
Vậy \(A=\frac{99}{50}\)
A=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9702}+\dfrac{1}{9900}\)
= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
=\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
= \(1-\dfrac{1}{100}\) = \(\dfrac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}\)\(+\frac{1}{12}\)\(+...+\frac{1}{9702}\)\(+\frac{1}{9900}\)
= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}\)\(+...+\frac{1}{98\cdot99}\)+ \(\frac{1}{99\cdot100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}\)
= \(\frac{100}{100}\)- \(\frac{1}{100}\)
= \(\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
A= 2 + 6 + 12 + 20 + ...... + 9702 + 9900
A = 1.2 + 2.3 + 3.4 + ......... + 98 . 99 + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ....+ 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ..... + 99.100.101 - 98.99.100
3A = 99 . 100 . 101
A = 99 . 100 . 101 : 3
A = 333300
A=1.2+2.3+3.4+4.5+....+.....
3A=.....
Bạn biets làm rồi đúng ko
Tích mk nha hùng