K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)\)

\(=99-\frac{99}{100}< 99\)

\(\Rightarrow A< 99\)

4 tháng 5 2017

\(A=100\cdot\left(1+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+...+\dfrac{9899}{9900}\right)\\ =100\cdot\left(1+1-\dfrac{1}{6}+1-\dfrac{1}{12}+1-\dfrac{1}{20}+...+1-\dfrac{1}{9900}\right)\\ =100\cdot\left[\left(1+1+1+...+1\right)-\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\right]\\ =100\cdot\left[99-\dfrac{49}{100}\right]\\ =100\cdot\dfrac{9851}{100}\\ =9851\)

6 tháng 5 2017

Bạn cho hỏi làm sao biết được bao nhiêu số 1 để cộng thành 99? Cảm ơn

cái này tính cái gì thế

ko hiểu

25 tháng 4 2018

Ta có : 

\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)

\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)

\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)

\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)

\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)

Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra : 

\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{A}{100}=98-\frac{49}{100}\)

\(\frac{A}{100}=\frac{9751}{100}\)

\(A=\frac{9751}{100}.100\)

\(A=9751\)

Vậy \(A=9751\)

Chúc bạn học tốt ~ 

18 tháng 2 2021

Bạn Ác Mộng làm đúng nhưng làm hơi tắt quá 

24 tháng 6 2021

a. 11 + 12 + 13 +14+15+16+17+18+19

= ( 11 + 19 ) + ( 12 + 18 ) + ( 13 + 17 ) + ( 14 + 16 ) + 15

= 30 +  30 + 30 + 30 + 15

= 120 + 15

= 132

b .  1+2+3+4+5+................+99+100

Dãy trên có tất cả số số hạng là :

( 100 - 1 ) : 1 + 1 = 100 ( số )

Tổng của dãy số trên là :

( 100 + 1 ) x 100 : 2 = 5050

Phần c và phần d bạn làm như phần b

Công thức tính số số hạng : ( số lớn - số bé ) : khoảng cách + 1

Công thức tính tổng : ( số lớn + số bé ) x số số hạng : 2

Hok tốt

24 tháng 6 2021

Phần a bạn sửa đáp án cuối cùng là 135 nhé

Mk đánh máy nhầm

Hok tốt

6 tháng 8 2016

A = 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72

A = ( 1 - 1/2 ) + ( 1 - 1/6 ) + ( 1 - 1/12 ) + ( 1 - 1/20 ) + ( 1 - 1/30 ) + ( 1 - 1/42 ) + ( 1 - 1/56 ) + ( 1 - 1/72 )

A = 1 x 8 - ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 )

A = 8 - ( \(\frac{1}{1\cdot2} +\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\))

A = \(8-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

A = \(8-\left(1-\frac{1}{9}\right)\)

\(A=8-\frac{8}{9}\)

\(A=\frac{64}{9}\)

15 tháng 10 2018

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{38}{5}\)

6 tháng 6 2021

100/11

hok tốt