Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2
= n + 2 / 2n + 5
Mà n + 2 / 2n + 5 < n + 2 / 2n + 1
=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1
Vậy n / 2n + 3 < n + 2 / 2n + 1
b) Ta có : n / 3n + 1 = 2n / 6n + 2
Mà 2n / 6n + 2 < 2n / 6n + 1
Vậy n / 3n + 1 < 2n / 6n + 1
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
Ta có :
\(\frac{2}{1.3}=1-\frac{1}{3}\)
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
...............................
\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)
\(\Rightarrow C=\frac{n}{2n+1}\)
A =(-1)2n.(-1)n.(-1)n+1
A = (-1)2n+n+n+1
A = (- 1)4n + 1
A = (-1)4n.(-1)
A = 1.(-1)
A = -1
Ta có :
\(f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}+...-x^2+x-1\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+\left(x^{2n-1}-x^{2n-1}\right)+...+\left(x^2-x^2\right)+\left(x-x\right)\)+ ( 1 - 1 )
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}\)
Thay \(x=\frac{1}{10}\)vào \(f\left(x\right)-g\left(x\right)\)ta được :
\(\left(\frac{1}{10}\right)^{2n+1}=\left(\frac{1}{10}\right)^{2n}.\frac{1}{10}=\left(\frac{1^2}{10^2}\right)^n.\frac{1}{10}=\left(\frac{1}{100}\right)^n.\frac{1}{10}=\frac{1}{100^n}.\frac{1}{10}\)
Vậy \(f\left(x\right)-g\left(x\right)=\frac{1}{100^n}.\frac{1}{10}\)
a: \(\left(-1\right)^{2n}=1\)
b: \(\left(-1\right)^{2n+1}=-1\)