K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(-1\right)^{2n}=1\)

b: \(\left(-1\right)^{2n+1}=-1\)

9 tháng 7 2017

a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2

                                = n + 2 / 2n + 5

Mà n + 2 / 2n + 5 < n + 2 / 2n + 1

=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1

Vậy n / 2n + 3 < n + 2 / 2n + 1

b) Ta có : n / 3n + 1 = 2n / 6n + 2

Mà 2n / 6n + 2 < 2n / 6n + 1

Vậy n / 3n + 1 < 2n / 6n + 1 

6 tháng 8 2017

a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)

\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z

b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)

\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z

17 tháng 10 2018

linh cx đã làm đc đâu

17 tháng 10 2018

Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 3 2019

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

Ta có : 

\(\frac{2}{1.3}=1-\frac{1}{3}\)

\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)

...............................

\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)

\(\Rightarrow C=\frac{n}{2n+1}\)

21 tháng 10 2017

(5x-4)n=1

=> \(\sqrt[n]{1}=1\)

=> 5x-4 = 1

5x = 1+4

5x = 5

x = 5:5

x = 1

(8x-1)2n+1 = 52n+1

\(\sqrt[2n+1]{5^{2n+1}}=5\)

=> 8x-1 = 5

8x = 5+1

8x = 6

x = 6:8

x = 3/4

7 tháng 10

A  =(-1)2n.(-1)n.(-1)n+1

A = (-1)2n+n+n+1

A = (- 1)4+ 1

A = (-1)4n.(-1)

A = 1.(-1)

A = -1 

10 tháng 7 2018

Ta có : 

\(f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}+...-x^2+x-1\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+\left(x^{2n-1}-x^{2n-1}\right)+...+\left(x^2-x^2\right)+\left(x-x\right)\)+  ( 1 - 1 ) 

\(\Rightarrow f\left(x\right)-g\left(x\right)=x^{2n+1}\)

Thay \(x=\frac{1}{10}\)vào \(f\left(x\right)-g\left(x\right)\)ta được : 

\(\left(\frac{1}{10}\right)^{2n+1}=\left(\frac{1}{10}\right)^{2n}.\frac{1}{10}=\left(\frac{1^2}{10^2}\right)^n.\frac{1}{10}=\left(\frac{1}{100}\right)^n.\frac{1}{10}=\frac{1}{100^n}.\frac{1}{10}\)

Vậy \(f\left(x\right)-g\left(x\right)=\frac{1}{100^n}.\frac{1}{10}\)

15 tháng 8 2017
nhanh lên các bạn
12 tháng 9 2021

Đề là gì bạn nhỉ?

Đề bài yêu cầu gì?