Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 3 + ... + 99 + 100
Tổng A có số số hạng là \(\frac{100-1}{1}+1=100\)(số hạng)
=>\(A=\frac{\left(100+1\right).100}{2}=4950\)
B = 12 + 22 + 32 + ... + 992 + 1002
Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath
C = 13 + 23 + 33 + ... + 993 + 1003
https://lop67.tk/hoidap/16575/ti%CC%81nh-a-1-3-2-3-3-3-100-3-v%C3%A0-b-1-3-2-3-3-3-4-3-99-3-100-3
A) A= -1^2+2^2-3^2+4^2...99^2+100^2
A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )
= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )
= 1 + 2 + 3 + 4 + ... + 99 + 100
= \(\frac{100.101}{2}=5050\)
\(1^2-2^2+3^2-4^2+...+97^2-98^2+99^2-100^2=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(97-98\right)\left(97+98\right)+\left(99-100\right)\left(99+100\right)\)\(=-\left(1+2+3+4+...+97+98+99+100\right)\)
\(=-\left(\frac{101\times100}{2}\right)=-5050\)
Ta có
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
Suy ra \(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)
Đặt \(n=\frac{1}{2}\) thì \(A=1+n+n^2+...+n^{99}-\frac{100}{2^{100}}\)
Xét \(B=1+n+n^2+...+n^{99}\Leftrightarrow B.n=n+n^2+n^3+...+n^{100}\)
\(\Leftrightarrow B.n=\left(1+n+n^2+...+n^{99}\right)+\left(n^{100}-1\right)\)
\(\Leftrightarrow B.n=B+n^{100}-1\Leftrightarrow B\left(n-1\right)=n^{100}-1\Leftrightarrow B=\frac{n^{100}-1}{n-1}\)
Suy ra \(A=\frac{\frac{1}{2^{100}}-1}{\frac{1}{2}-1}-\frac{100}{2^{100}}=2\left(1-\frac{1}{2^{100}}\right)-\frac{100}{2^{100}}=-\frac{102}{2^{100}}+2< 2\)
Vậy A < 2
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(99^2-100^2\right)+101^2\)\(=-\left(3+7+...+199\right)+101^2=-\frac{\left(3+199\right).50}{2}+101^2=5151\)
câu này ko biết à
A=(22-12)+(42-32)+...+(100^2-99^2)
A=1+2+3+...+100
đến đây tự làm tiếp(chép sai dấu 2 số hạng cuối