Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 99 = 100 - 1 = x - 1
Thay vào A, ta có :
A = -x10 + (x-1)x9 + (x-1)x8 + ...... + (x-1)x + 99
= -x10 + x10 - x9 + x9 - x8 + ........+ x2 - x + 99
= -x + 99
Thay x = 10 vào A ta có :
A = -100 + 99 = -1
a) \(C=x^3+3x^2+3x+10=\left(x+1\right)^3+9\)
Tại x = 99...9 (2004 chữ số 9) thì: x+1 = 100...0 (2004 chữ số 0) = 102004
Khi đó, C = (102004)3 + 9 = 106012 + 9.
b) \(B=\left(5x-11\right)^2-\left(10x-22\right)\left(5x-9\right)+\left(5x-9\right)^2=\)
\(=\left(5x-11\right)^2-2\cdot\left(5x-11\right)\left(5x-9\right)+\left(5x-9\right)^2=\left(5x-11-\left(5x-9\right)\right)^2=\left(-2\right)^2=4\)
Hay B = 4 với mọi x .
Vậy tại x = 20052006 thì B = 4.
x = 99 suy ra 100 = x +1
A= x^5 - (x + 1)x^4 + (x + 1)x^3 - (x+1)x^2 + (x +1)x - 9
A= x^5 - x^5 - x^4 + x^4 +x^3 - x^3 -x^2 +x^2 + x - 9
A= x - 9 = 99 - 9 = 90
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức:
\(m=f\left(\frac{1}{3}\right)=100.\frac{1}{3^{100}}+99.\frac{1}{3^{99}}+....+2.\frac{1}{3^2}+\frac{1}{3}+1\)
\(\Rightarrow 3m=\frac{100}{3^{99}}+\frac{99}{3^{98}}+....+\frac{2}{3}+1+3\)
Trừ theo vế:
\(2m=3+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6m=9+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
Trừ theo vế:
\(4m=7-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4m=7-\frac{200}{3^{100}}-\frac{1}{3^{99}}< 7\Rightarrow m< \frac{7}{4}\) (đpcm)
Bạn có ghi sai đề không vậy?