K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

\(2009-\frac{2010}{3}-\frac{2010}{6}-\frac{2010}{15}-...-\frac{2010}{45}\)

\(=2009-2010.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{15}+...+\frac{1}{45}\right)\)

\(=2009-2010.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{90}\right)\)

Có vấn đề chỗ 2010/15 bạn xem lại

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn

29 tháng 9 2016

a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)

=> -2 < x < 1

Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu) 

29 tháng 9 2016

a) a=  2 và 1

b)    =      7

c=     5600 và 7899

d  5 và 6 

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

27 tháng 9 2016

+ \(\frac{a}{2009}=\frac{b}{2010}\Leftrightarrow2010a=2009b.\)(1)

+ \(\frac{a+2009}{a-2009}=\frac{b+2010}{b-2010}\Rightarrow\left(a+2009\right)\left(b-2010\right)=\left(a-2009\right)\left(b+2010\right)\)

\(\Rightarrow ab-2010a+2009b-2009.2010=ab+2010a-2009b-2009.2010\)

\(\Leftrightarrow2.2009.b=2.2010.a\Leftrightarrow2010a=2009b\)(2)

Từ (1) và (2) => dpcm

13 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)

\(A=\frac{1}{2011}\)

 

13 tháng 9 2016

dunt