K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

fgfff

18 tháng 12 2018

\(VT=\left(x^2+1\right)\left(x^2+y^2\right)\ge2\sqrt{x^2}.2\sqrt{x^2y^2}=2x.2xy=4x^2y\) ( Cosi ) 

\(VT\ge0\)\(\Rightarrow\)\(VP=4x^2y\ge0\)\(\Rightarrow\)\(y\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}\Leftrightarrow x=y=1}\) ( vì \(y\ge0\) ) 

... 

NV
26 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)

\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)

\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)

\(\Rightarrow a+b=0\)

\(\Rightarrow x+2+y-1=0\)

\(\Rightarrow x+y=-1\)

26 tháng 8 2021

\(\sqrt{x^2+5x+4}\) hay \(\sqrt{x^2+4x+5}\) thế bạn

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

NV
13 tháng 8 2021

Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

(Cách chứng minh tại đây):

Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y  - Hoc24

\(\Rightarrow x+y=0\)

Do đó \(P=100\)

18 tháng 10 2021

x,y thuộc N ôk

23 tháng 2 2020

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

23 tháng 2 2020

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

3 tháng 6 2021

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)

\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)

\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)

Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)

\(\Leftrightarrow x+y=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

3 tháng 6 2021

Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`

`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`

`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`

CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`

Cộng từng vế (1)(2) ta có:

`2(x+y-1)=0`

`<=>x+y-1=0`

`<=>x+y=1`

`<=>(x+y)^3=1`

`<=>x^3+y^3+3xy(x+y)=1`

`<=>x^3+y^3+3xy=1`(do `x+y=1`)

NV
20 tháng 4 2019

\(A=\frac{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\sqrt{4x-1-2\sqrt{4x-1}+1}}{-\left(\sqrt{4x-1}-1\right).y^2\left(x^2+xy+y^2\right)}=\frac{\left(x^2-y^2\right)\sqrt{\left(\sqrt{4x-1}-1\right)^2}}{-\left(\sqrt{4x-1}-1\right).y^2}\)

Do \(x>1\Rightarrow4x-1>1\Rightarrow\sqrt{4x-1}>1\Rightarrow\sqrt{4x-1}-1>0\)

\(\Rightarrow A=\frac{\left(x^2-y^2\right)\left(\sqrt{4x-1}-1\right)}{-\left(\sqrt{4x-1}-1\right).y^2}=\frac{x^2-y^2}{-y^2}=1-\left(\frac{x}{y}\right)^2\)

\(A=-8\Rightarrow1-\left(\frac{x}{y}\right)^2=-8\Rightarrow\left(\frac{x}{y}\right)^2=9\)

Do \(\left\{{}\begin{matrix}x>1\\y< 0\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}< 0\Rightarrow\frac{x}{y}=-3\)