Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\)và \(x+y=-32\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4\cdot3=-12\\y=-4\cdot5=-20\end{cases}}\)
\(5x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k\) ; \(y=5k\)
Ta có : \(x+y=-32\Rightarrow3k+5k=-32\Rightarrow8k=-32\Rightarrow k=-4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-4\\\frac{y}{5}=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=-12\\y=-20\end{cases}}\)
Vậy ...
a, Thay \(x=\frac{7}{13}\)vào \(x+y=40\)=> \(\frac{7}{13}+y=40\Rightarrow y=40-\frac{7}{13}\Rightarrow y=\frac{513}{13}\)
b, Ta có: \(13x=7y\Rightarrow\frac{x}{7}=\frac{y}{13}\)và x+y=-60. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{-60}{20}=-3\) \(\Rightarrow\hept{\begin{cases}\frac{x}{7}=-3\Rightarrow x=-3\cdot7=-21\\\frac{y}{13}=-3\Rightarrow y=-3\cdot13=-39\end{cases}}\)
x^2 - y^2 = 38 (2)
(1) => y = (9/10) x.Thay vao (1) ---> x^2 - [(9/10)x]^2 = 38 <=> x^2 - (81/100)x^2 = 38
<=> (19/100)x^2 = 38 <=> x^2 = (38/19).100 = 200
<=>
{x = 10 can 2 ; y = (9/10)x = 9 can 2
{x = -10 can 2 ; y = (9/10)x = - 9 can 2.
ta có \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Vậy x=16;y=24;z=30
\(\left|x-3y\right|5+\left|y+4\right|=0\)
\(\Leftrightarrow\left\{\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy....
-------------
\(\left|x+3y-1\right|+3\left|y+2\right|=0\)
\(\Leftrightarrow\left\{\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
Vậy .....
1,a)\(\left|x-3y\right|\)\(\ge\)0 => \(\left|x-3y\right|\).5 \(\ge\)0
\(\left|y+4\right|\)\(\ge\)0
Mà \(\left|x-3y\right|\)5+\(\left|y+4\right|\)=0
=> \(\left|y+4\right|\)=0 => y=-4
=> \(\left|x-3y\right|\)=0 => \(\left|x-3.-4\right|\)=0 => x= -12
Câu b làm tương tự.
Tick cho chụy nha!
3/5x=2/3y
Mình ko rõ đề nên có 2TH nhé
TH1:3/5x=2/3y
3x/5=2y/3
9x/15=10y/15
9x=10y
x/10=y/9
x2/100=y2/81=x2-y2/100-81=8/19=1/2
X2=1/2.100=50
x=căn bậc hai của 50
y=căn bậc hai của 81/2
TH2:3/5x=2/3y
6/10x=6/9y
10x=9y
x/10=y/9
x2/100=y2/81=x2-y2/100-81=8/19=1/2
X2=1/2.100=50
x=căn bậc hai của 50
y=căn bậc hai của 81/2
#)Giải :
\(\frac{3x}{5}=\frac{2y}{3}\Leftrightarrow\frac{3x}{5}.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}\)
\(\Rightarrow\frac{3x}{30}=\frac{2y}{18}\Rightarrow\frac{x}{10}=\frac{y}{9}\Rightarrow\frac{x^2}{100}=\frac{y^2}{81}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2}{100}=\frac{y^2}{81}=\frac{x^2-y^2}{100-81}=\frac{38}{19}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{100}=2\\\frac{y^2}{81}=2\end{cases}\Rightarrow\hept{\begin{cases}x^2=200\\y^2=162\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm\sqrt{200}\\y=\pm\sqrt{162}\end{cases}}}\)
Vậy ...
Cho mk hỏi 1/6 ở đâu ra v?