Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{3x-5}{9}\right)^{2018}>=0\forall x\)
\(\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall y\)
Do đó: \(\left(\dfrac{3x-5}{9}\right)^{2018}+\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{0.4}{3}=-\dfrac{2}{15}\end{matrix}\right.\)
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2020}\ge0;\forall x,y\\\left(3y+4\right)^{2018}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy...
b)
Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)
\(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\)
Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\)
Vậy....
a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)
Đến đây lập bảng là ra .
b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)
\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)