Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}xy-3zt=1\\xz+yt=2\end{cases}}\Rightarrow\hept{\begin{cases}x^2y^2-6xyzt+9z^2t^2=1\\x^2z^2+2xyzt+y^2t^2=4\end{cases}}\)
\(\Rightarrow x^2y^2-6xyzt+9z^2t^2+3\left(x^2z^2+2xyzt+y^2t^2\right)=1+3.4\)
\(\Rightarrow x^2y^2+9z^2t^2+3x^2z^2+3y^2t^2=13\)
Có tổng các hệ số của VT là \(16\)mà \(x,y,z,t\)nguyên nên nếu tồn tại \(x,y,z,t\)thỏa mãn thì phải có một số bằng \(0\).
- Nếu \(x=0\)hoặc \(y=0\): \(-3zt=1\)(không có nghiệm nguyên)
- Nếu \(z=0\): \(\hept{\begin{cases}xy=1\\yt=2\end{cases}}\)có nghiệm nguyên là \(x=y=1,t=2\)hoặc \(x=y=-1,t=-2\).
- Nếu \(t=0\): \(\hept{\begin{cases}xy=1\\xz=2\end{cases}}\)có nghiệm nguyên là \(x=y=1,z=2\)hoặc \(x=y=-1,z=-2\)
từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3)
+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp )
+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp )
\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1)
Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)
(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)
\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)
\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2)
Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)
(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)
TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)
TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)
Ta có (x + y +z)² ≥ 0 suy ra x² + y² + z² + 2 ( xy + yz + zx) ≥ 0
1 + 2 ( xy + yz + zx) ≥ 0
xy + yz + zx ≥ - 1 / 2
Thế thì min (xy + yz + zx) = - 1 / 2 khi x+ y + z = 0 và x² + y² + z² = 1 ( ♥ )
Lại có I xz I = I x I I z I ≤ 1 / 2 ( x² + z² ) = 1 / 2 ( 1 - y² ) ≤ 1 / 2
Thế thì min ( xz ) = - 1 / 2 khi x = - z và x² + y² + z² = 1 và y = 0 ( ♣ )
Từ ( ♥ ) và ( ♣ ) cho ta
min ( xy + yz + 2.zx ) = - 1 / 2 - 1 / 2 = - 1
khi x = √2 / 2 ; y = 0 ; z = - √2 / 2 chẳng hạn
P/C bạn dựa vào đk x + y + z = 0 ; x² + y² + z² = 1;y = 0 ; x = - z
Ta có đẳng thức:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
hoặc bạn áp dụng hệ thức holder á
Ta có:
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Mặt khác:
\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)
hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)
Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
khó lắm