Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
giá trị tuyện đối luôn là số tự nhiên
số tự nhiên chỉ có thể 0 + 0 + 0 =0 nên x;y;z = 0
từ đề bài
suy ra x+y+y-z+z-x=-8+4+(-6)=-10
2y=-10
y=-5
tu đ1 tìm được z và x
cộng ba vế lại được :
( x + y ) + ( y - z ) + ( z - x ) = ( -8 ) + 4 + ( -6 )
x + y + y - z + z - x = -10
2y = -10
\(\Rightarrow\)y = ( -10 ) : 2 = -5
Thay y = -5 vào x + y = -8 được : x + ( -5 ) = -8
\(\Rightarrow\)x = ( -8 ) - ( -5 ) = ( -3 )
Thay y = -5 vào y - z = 4 ta được : ( -5 ) - z = 4
\(\Rightarrow\)z = -5 - 4 = -9
Vậy y = -5 ; x = -3 ; z = -9
Cảm ơn nha