Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
https://lazi.vn/users/dang_ky?u=kieu-anh.pham4
Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)
Ta có: \(xy\ge yz;xy\ge xz\)
Ta có: \(xy+yz+xz\le3xy\)
\(\Rightarrow xyz\le3xy\Leftrightarrow z\le3\)
Xét với \(z\in\left\{3;2;1\right\}\left(z\in Z^+\right)\)
Lấy xy*yz*xz=(xyz)^2=36
xyz=6
x=xyz/yz=6/6=1
y=xy/x=2/1=2
z=yz/y=6/2=3
Ta có : xy.yz.xz = 2.3.54
<=> ( xyz )2 = 324
=> ( xyz )2 = 182 = ( - 18 )2
TH1 : xyz = 18
=> z = xyz : xy = 18 : 2 = 9
=> 9y = 3 => y = 1/3
=> 1/3x = 2 => x = 6
TH2 : xyz = - 18
=> z = xyz : xy = - 18 : 2 = - 9
=> - 9y = 3 => y = - 1/3
=> - 1/3x = 2 => x = - 6
Vậy ( x;y;z ) = { ( 9;1/3;6 ); ( - 9;- 1/3 ; - 6 ) }
\(xy=z\)
\(yz=4x\)
\(xz=9y\)
suy ra: \(xy.yz.xz=z.4x.9y\)
\(\Rightarrow\)\(x^2y^2z^2=36xyz\)
\(\Rightarrow\)\(xyz=36\)
Vì \(xy=z\)\(\Rightarrow\)\(z^2=36\)\(\Rightarrow\)\(z=\pm6\)
\(yz=4x\)\(\Rightarrow\)\(4x^2=36\)\(\Rightarrow\)\(x=\pm3\)
\(xz=9y\)\(\Rightarrow\)\(9y^2=36\)\(\Rightarrow\)\(y=\pm2\)
P/s: mk ko chắc lm đúng, you tham khảo
P/S đúng rồi đó, nếu kết luận như bạn có 8 cặp, nhưng chỉ có 4 cặp đúng