K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

a.2010-|x-2010|=x

=>| x-2010|=2010-x

Ta có: | x- 2010 |= x-2010 hoặc |x-2010|= -(x-2010)

TH1: | x-2010|= x-2010

=>x-2010= 2010 - x

=> x+x= 2010+2010

=> 2x = 4020

=> x = 2010.

TH2: | x-2010|=-( x- 2010)

=> -x+2010= 2010-x

=>-x+x=2010-2010

=> 0=0(luôn đúng).

=>x=0

Vậy x= 2010 hoặc x=0

b. Ta có: \(\left(2x-1\right)^{2010}\) \(\ge0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}\ge0\)

\(\left|x+y-z\right|\ge0\)

=> Để biểu thức trên xảy ra =>\(\left(2x-1\right)^{2010}=0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

\(\left|x+y-z\right|=0\)

* Với \(\left(2x-1\right)^{2010}=0\)

=> 2x -1 =0

=> 2x = 1

=> x= \(\dfrac{1}{2}\)

*Với \(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

=> \(y-\dfrac{2}{5}=0\)

=> y= \(\dfrac{2}{5}\)

* Với \(\left|x+y-z\right|=0\)

=> x+y-z=0

=> \(\dfrac{1}{2}+\dfrac{2}{5}-z=0\)

=> \(\dfrac{9}{10}-z=0\)

=> \(z=\dfrac{9}{10}\)

Vậy \(x=\dfrac{1}{2}\); \(y=\dfrac{2}{5}\); \(z=\dfrac{9}{10}\)

21 tháng 3 2017

nè,câu a mình làm có đúng k các bạn?lolang

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

9 tháng 2 2018

VÌ \(\left(x-1\right)^{2012}\ge0\)

\(\left(y-2\right)^{2010}\ge0\)

\(\left(x-z\right)^{2008}\ge0\)

nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)

15 tháng 6 2017

a, H = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(\Leftrightarrow\) 2H = \(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)

\(\Leftrightarrow\) 2H - H = \((2^{2011}-2^{2010}-2^{2009}-...-2^2-2)\) - \((2^{2010}-2^{2009}-2^{2008}-...-2-1)\)

\(\Leftrightarrow\) H = \(2^{2011}-2.2^{2010}+1\)

\(\Leftrightarrow\) H = \(2^{2011}-2^{2011}+1\)

\(\Leftrightarrow\) H = 1

Vậy H = 1

9 tháng 4 2017

a)H=22010-22009-...-2-1

=>2H=2(22010-22009-...-2-1)

=>2H=22011-22010-...-22-2

=>2H-H=(22011-22010-...-22-2)-(22010-22009-...-2-1)

=>H=22011-1

20 tháng 2 2017

Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0

Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)

=> x=2009; y=2010; z=2011

20 tháng 2 2017

x=2009

y=2010

z=2011

21 tháng 11 2019

a

\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)

\(\Rightarrow VT\ge0\)

Dấu "=" xảy ra tại \(x=z=1;y=2\)

b

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có:

\(x^2+y^2+z^2=116\)

\(\Leftrightarrow4k^2+9k^2+16k^2=116\)

\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)

Thế ngược lên trên,àm nốt

c

\(\left||x-2|-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

d

\(xy+2x-y=5\)

\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Lập bảng làm nốt

đ

Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v

\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)

\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)

\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)

\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)

Chia khoảng đi nha !

P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !

18 tháng 3 2017

Ta có \(\hept{\begin{cases}\left(3x-5\right)^{2008}\ge0\\\left(y^2-1\right)^{2010}\ge0\\\left(x-z\right)^{2012}\ge0\end{cases}}\)mà \(\left(3x-5\right)^{2008}+\left(y^2-1\right)^{2010}+\left(x-z\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{2008}=0\\\left(y^2-1\right)^{2010}=0\\\left(x-z\right)^{2012}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;-1\\z=x=\frac{5}{3}\end{cases}}\)

21 tháng 3 2019

a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)

\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)

hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)

hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)

V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)

b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)

Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)

            \(\frac{y}{3}=4\Leftrightarrow y=12\)

             \(\frac{z}{4}=4\Leftrightarrow z=16\)

V...

17 tháng 1 2017

Bài 2 )

\(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(x+z\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)

\(\Leftrightarrow\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}\)

Đặt \(\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}=k\)

\(\Rightarrow\left\{\begin{matrix}bc=k\left(y+z\right)=ky+kz\\ac=k\left(x+z\right)=kx+kz\\ab=k\left(x+y\right)=kx+ky\end{matrix}\right.\) (1)

Gỉa sử điều cần chứng minh là đúng ta có

\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

\(\Leftrightarrow\frac{y-z}{ab-ac}=\frac{z-x}{bc-ab}=\frac{x-y}{ac-bc}\)

Thế (1) vào biểu thức

\(\frac{y-z}{kx+ky-\left(kx+kz\right)}=\frac{z-x}{ky+kz-\left(kx+ky\right)}=\frac{x-y}{kx+kz-\left(ky+kz\right)}\)

\(\Leftrightarrow\frac{y-z}{ky-kz}=\frac{z-x}{kz-kx}=\frac{x-y}{kx-ky}\)

\(\Leftrightarrow\frac{y-z}{k\left(y-z\right)}=\frac{z-x}{k\left(z-x\right)}=\frac{x-y}{k\left(x-y\right)}\)

\(\Leftrightarrow\frac{1}{k}=\frac{1}{k}=\frac{1}{k}\) ( điều này luôn luôn đúng )

\(\Rightarrow\) ĐPCM