\(\left|x-2009\right|^{2009}+\left(y-2010\right)^{2010}+2011\left|z-2011\right|\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0

Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)

=> x=2009; y=2010; z=2011

20 tháng 2 2017

x=2009

y=2010

z=2011

14 tháng 3 2018

TA CÓ: \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)

\(\Rightarrow\frac{x}{2009}=k\Rightarrow x=2009k\)

\(\frac{y}{2010}=k\Rightarrow y=2010k\)

\(\frac{z}{2011}=k\Rightarrow z=2011k\)

thay vào \(\left(x-z\right)^3=\left(2009k-2011k\right)^3=\left(k.\left(2009-2011\right)\right)^3=\left(k.\left(-2\right)\right)^3=k^3\left(-2\right)^3=k^3.\left(-8\right)\)

\(8\left(x-y\right)^2\left(y-z\right)=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)=8\left(-k\right)^2\left(-k\right)=\left(-8\right)k^3\)

\(\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(=k\left(-8\right)\right)\)  ( đ p c m)

CHÚC BN HỌC TỐT!!!

14 tháng 1 2018

Có : |x-2009|+|x-2012| = |x-2009|+|2012-x| >= |x-2009+2012-x| = 3

Lại có : |x-2010| và |y-2011| đều >= 0

=> |x-2009|+|x-2010|+|y-2011|+|x-2012| >= 3

Dấu "=" xảy ra <=> (x-2009).(2012-x) >= 0 ; x-2010 = 0 ; y-2011 = 0  <=> x=2010 và y=2011

Vậy x=2010 và y=2011

Tk mk nha

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

21 tháng 2 2018

A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011

≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011

= /y-2010/+/x-2011/+2012≥2012

Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)

Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

2 tháng 12 2019

Nhanh lên nhé mình xin các bạn đấy

21 tháng 2 2019

câu b để nghĩ chút.

Đặt \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)

\(\Rightarrow x=2009k;y=2010k;z=2011k\)

Khi đó:\(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)

\(\Leftrightarrow\left(2009k-2011k\right)^3=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)\)

\(\Leftrightarrow\left(-2k\right)^3=8\left(-k\right)^2\left(-k\right)\)

\(\Leftrightarrow-8k^3=-8k^3\)(luôn đúng)

Vậy \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)

21 tháng 2 2019

câu b sai đề

\(\frac{x}{26}+\frac{y}{4}=\frac{z}{2012}\Rightarrow\frac{2x+13y}{52}=\frac{z}{2012}\Leftrightarrow2012.\left(2x+13y\right)=52z\)

\(\Leftrightarrow2.2012x+13.2012y=52z\)

1 bài có nhiều ẩn thế ? :)