Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(x=3y=2z\)
\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)
\(\Rightarrow x=\frac{k}{3}\)
\(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)
\(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)
3)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{50}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1750}{71}\\y=\frac{1050}{71}\\z=\frac{650}{71}\end{cases}\)
4)
\(5x=12y=8z\)
\(\Rightarrow\frac{5x}{120}=\frac{12y}{120}=\frac{8z}{120}\)
\(\Rightarrow\frac{x}{24}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{24}=\frac{y}{10}=\frac{z}{15}=\frac{x+y+z}{24+10+15}=\frac{46}{49}\)
\(\Rightarrow\begin{cases}x=\frac{1196}{49}\\y=\frac{460}{49}\\z=\frac{690}{49}\end{cases}\)
5)
\(6x=4y=2z\)
\(\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x-y-z}{2-3-6}=\frac{27}{-7}\)
\(\Rightarrow\begin{cases}x=\frac{54}{-7}\\y=\frac{81}{-7}\\z=\frac{162}{-7}\end{cases}\)
Các câu sau tương tự
Từ \(9x=12y=8z\)=>\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x+y+z}{8+6+9}=\dfrac{46}{23}=2\)
=>x=16;y=12;z=18
Toshiro KiyoshiNguyễn Thị Hồng NhungNguyễn Đình DũngNguyễn Thanh HằngTrần Thiên KimAce LegonaSonboygaming TranRồng Đỏ Bảo LửaÁnh Dương Hoàng VũDƯƠNG PHAN KHÁNH DƯƠNG
a: 9x=12y=8z
=>x/8=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x+y+z}{8+6+9}=\dfrac{46}{23}=2\)
=>x=16; y=12; z=18
b: \(6x=4y=-2z\)
nên x/3=y/2=z/-6
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-6}=\dfrac{x-y-z}{3-2+6}=\dfrac{27}{7}\)
=>x=81/7; y=54/7; z=-162/7
c: Đặt x/2=y/3=z/5=k
=>x=2k; y=3k; z=5k
Ta có: \(x^2+y^2-z^2=-12\)
=>\(4k^2+9k^2-25k^2=-12\)
=>k^2=1
TH1: k=1
=>x=2; y=3; z=5
TH2: k=-1
=>x=-2; y=-3; z=-5
d: Đặt x/3=y/2=z/4=k
=>x=3k; y=2k; z=4k
Ta có: xyz=192
=>24k^3=192
=>k=2
=>x=6; y=4; z=8
a, 3x = 2y = z
<=> \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{2}+1}=\frac{18}{\frac{11}{6}}=\frac{108}{11}\)
\(\Rightarrow\hept{\begin{cases}3x=\frac{108}{11}\\2y=\frac{108}{11}\\z=\frac{108}{11}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{36}{11}\\y=\frac{54}{11}\\z=\frac{108}{11}\end{cases}}\)
b, 6x = 4y = -2z
<=> \(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}=\frac{x-y-z}{\frac{1}{6}-\frac{1}{4}+\frac{1}{2}}=\frac{27}{\frac{5}{12}}=\frac{324}{5}\)
\(\Rightarrow\hept{\begin{cases}6x=\frac{324}{5}\\4y=\frac{324}{5}\\-2z=\frac{324}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{54}{5}\\y=\frac{81}{5}\\z=\frac{-162}{5}\end{cases}}\)