Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi 2x+7y-3z=2 nen 4x+14y-6z=4
3y+14y-3y=4
14y=4 nen y=2/7
x=3/14
z=1/7
Bn thu tinh lai gium mk nhe !
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Ta có: 2x=3y
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
hay \(\dfrac{x}{9}=\dfrac{y}{6}\left(1\right)\)
Ta có: 4y=6z
nên \(\dfrac{y}{6}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}=\dfrac{x+2y-3z}{9+2\cdot6-3\cdot4}=\dfrac{9}{9}=1\)
Do đó: x=9; y=6; z=4
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(4x=3y;5y=3z\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
suy ra :
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
4x = 3y => x/3 = y/4 (1)
5y = 3z => y/3 = z/5 (2)
từ (1), (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và 2x - 3y + z = 6
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{9\cdot2-3\cdot12+20}=\frac{6}{2}=3\)
suy ra: \(\frac{x}{9}=3\Rightarrow x=9\cdot3=27\)
\(\frac{y}{12}=3\Rightarrow y=12\cdot3=36\)
\(\frac{z}{20}=3\Rightarrow z=20\cdot3=60\)
4x=3y=>x/3=y/4=>x/9=y/12 (1)
5y=3z=>y/3=z/5=>y/12=z/20 (2)
từ 1 và 2 ta có :
x/9=y/12=z/20
=>2x/18=3y/36
áp ...ta có :
2x/18=3y/36=2x-3y/18-36=6/-18=-1/3
=>x/9=-1/3=>x=-3
=>y/12=-1/3=>y=-4
=>z/20=-1/3=>z=-20/3
\(\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y}{2.9-3.12}=\frac{6}{-18}=-\frac{1}{3}\)
x =-1/3 . 9 = -3
y= -1/3 .12 = -4
z = -1/3 .20 = -20/3
Vì \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
\(4x=6z\Rightarrow\frac{x}{6}=\frac{z}{4}\Rightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
\(\Rightarrow\frac{2x}{6}=\frac{7y}{28}=\frac{3z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{6}=\frac{7y}{28}=\frac{3z}{6}=\frac{2x+7y-3z}{6+28-6}=\frac{2}{28}=\frac{1}{14}\)
\(\cdot\frac{x}{3}=\frac{1}{14}\Rightarrow x=\frac{3}{14}\)
\(\cdot\frac{y}{4}=\frac{1}{14}\Rightarrow y=\frac{2}{7}\)
\(\cdot\frac{z}{2}=\frac{1}{14}\Rightarrow z=\frac{1}{7}\)