K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

bạn ơi sai đề bài à

4xy+2x^2+6y^2=32

2.(2xy+x^2+y^2)=32

(x+y)^2=32:2

(x+y)^2=16

(x+y)^2=8^2

x+y=8

<=>.....

đoạn dưới bn tự suy ra nhe. mik lười =>

19 tháng 10 2020

4xy + 2x + 6y = 32

⇔ 4xy + 2x + 6y - 32 = 0

⇔ 2x( 2y + 1 ) + 3( 2y + 1 ) - 35 = 0

⇔ ( 2y + 1 )( 2x + 3 ) = 35

Ta có bảng sau :

2x+31-15-57-735-35
2y+135-357-75-51-1
x-1-21-42-516-19
y17-183-42-30-1

Vậy ...

3 tháng 7 2017

i) xy - 6y + 2x - 12

= (xy - 6y) + (2x - 12)

= y(x - 6) + 2(x - 6)

= (x - 6)(y + 2)

ii) 2x(y - z) + (z - y)(x + y)

= 2x(y - z) - (y - z)(x + y)

= (y - z)(2x - x - y)

= (y - z)(x - y)

b) x + 3 = (x + 3)2 ⇔ (x + 3)2 - (x + 3) = 0 ⇔ (x + 3)(x + 3 - 1) = 0

⇔ (x + 3)(x + 2) = 0

Vậy x = -3; x = -2

16 tháng 9 2018

 A = 5x² + 2y² + 6xy + 2x + 6y + 32 

⇒ 2A = 10x² + 4y² + 12xy + 4x + 12y + 64 

= (4y² + 12xy + 9x²) + x² + 4x + 12y + 64 

= (2y + 3x)² + x² - 14x + 18x + 12y + 9 + 49 + 6 

= (3x + 2y)² + (18x + 12y) + 9 + (x² - 14x + 49) + 6 

= [ (3x + 2y)² + 6(3x + 2y) + 9 ] + (x - 7)² + 6 

= (3x + 2y + 3)² + (x - 7)² + 6. 

Do (3x + 2y + 3)² ≥ 0; (x - 7)² ≥ 0 ⇒ (3x + 2y + 3)² + (x - 7)² ≥ 0. 

⇒ 2A = (3x + 2y + 3)² + (x - 7)² + 6 ≥ 6 

⇒ A ≥ 3. Dấu ''='' xảy ra ⇔ (x - 7)² = 0 và (3x + 2y + 3)² = 0 

⇔ x - 7 = 0 và 3x + 2y + 3 = 0 

⇔ x = 7 và 2y = -3x - 3 = -3.7 - 3 = -24 

⇔ x = 7 và y = -12. Vậy GTNN của A = 3 đạt được ⇔ x = 7 và y = -12.

Nguồn: https://vn.answers.yahoo.com/

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

1 tháng 10 2021

`A=-(x^2-2x)-(y^2+6y)+9`

`=-(x^2-2x+1)-(y^2+6y+9)+19`

`=-(x-1)^2-(y+3)^2+19<=19`

Dấu "=" xảy ra khi `x=1` và `y=-3`

`B=-(2x-5)^2+6|2x+5|+4`

`=-[(2x-5)^2-6|2x-5|+9]+13`

`=-(|2x-5|-3)^2+13<=13`

Dấu "=" xảy ra khi `|2x-5|=3<=>[(x=4),(x=1):}`

b: Ta có: \(B=-x^2-y^2+2x-6y+9\)

\(=-\left(x^2-2x+y^2+6y-9\right)\)

\(=-\left(x^2-2x+1+y^2+6y+9-19\right)\)

\(=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

5 tháng 2 2020

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

24 tháng 10 2015

bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)

         =\(2\left(x-3\right)\left(x+y-3\right)\)

bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)

         P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

vậy Pmin=2 khi x=1 và y=-3

13 tháng 11 2021

\(C=2\left(x^2-2x+1\right)+\left(y^2-6y+9\right)-19=2\left(x-1\right)^2+\left(y-3\right)^2-19\ge-19\)

\(minC=-19\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)