Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 1:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{96}{2y}\)
Ta có: \(\dfrac{y}{3}=\dfrac{96}{2y}\Rightarrow2y^2=288\Leftrightarrow y^2=144\Leftrightarrow\left[{}\begin{matrix}y=12\Rightarrow x=8\\y=-12\Rightarrow x=-8\end{matrix}\right.\)
Vậy (x;y) = (8;12) ; (-8;-12)
cách 2: \(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
Đặt: \(k=\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow x=2k;y=3k\)
\(\Rightarrow xy=2k\cdot3k=6k^2\)
hay 96 = 6k2
=> k2 = 16 \(\Leftrightarrow\left[{}\begin{matrix}k=4\\k=-4\end{matrix}\right.\)
+) Với k = 4 => \(\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\end{matrix}\right.\)
+) Với k = -4 =>\(\left\{{}\begin{matrix}x=2\cdot\left(-4\right)=-8\\y=3\cdot\left(-4\right)=-12\end{matrix}\right.\)
Vậy........
p/s: làm cách nào cx đc nhé
\(\dfrac{2}{x}=\dfrac{3}{y}\)và \(x.y=96\)
\(\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Ta có: \(\dfrac{y}{3}=\dfrac{x}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}y=3.k\\x=2.k\end{matrix}\right.\)mà \(x.y=96\)
\(\Rightarrow3k.2k=96\)
\(6.k^2=96\)
\(k^2=96\div6\)
\(k^2=16\)
\(\Rightarrow\)\(\)\(k=4\) hoặc \(k=-4\)
\(\Rightarrow\left\{{}\begin{matrix}y=4.3\\x=4.2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=12\\x=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\left(-4\right).3\\x=\left(-4\right).2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-12\\x=-8\end{matrix}\right.\)
Vậy \(y=12\) ; \(x=8\) hoặc \(y=-12\) ; \(x=-8\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
phải cho điều kiện là x,y thuộc Z
xy + 3x - 2y - 7 = 0
x ( y + 3 ) - ( 2y + 6 ) - 1 = 0
x . ( y + 3 ) - 2 . ( y + 3 ) = 1
( x - 2 ) . ( y + 3 ) = 1
\(\Rightarrow\)x - 2, y + 3 thuộc Ư ( 1 ) = { 1 ; -1 }
Sau đó cậu lập bảng tìm x,y
\(\frac{x^2+xy+y^2}{x^2-xy}\)
x - 2y = 0 <=> x = 2y
Thế vào ta được :
\(\frac{x^2+xy+y^2}{x^2-xy}=\frac{\left(2y\right)^2+2y\cdot y+y^2}{\left(2y\right)^2-2y\cdot y}=\frac{4y^2+2y^2+y^2}{4y^2-2y^2}=\frac{7y^2}{2y^2}=\frac{7}{2}\)
Vậy giá trị của biểu thức = 7/2 khi x - 2y = 0
Ta có:\(\frac{x}{xy+x+1}=\frac{y}{yz+y+1}=\frac{z}{xz+x+1}\)=\(\frac{xz}{xyz+xz+z}=\frac{yxz}{xyz^2+yxz+xz}=\frac{z}{xz+z+1}\)
=\(\frac{xz}{1+xz+z}=\frac{xyz}{z+1+xz}=\frac{z}{xz+z+1}\)
=\(\frac{xyz+xz+1}{xyz+xz+1}\)=1
Đề bn ghi sai nha~~
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
1/
Ta có: \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\Rightarrow x:y=x+1\left(y\ne0\right)\)
Mà x - y = x:y
\(\Rightarrow x-y=x+1\Rightarrow-y=1\Rightarrow y=-1\)
Thay y = -1 vào x - y = xy ta được:
\(x-\left(-1\right)=x.\left(-1\right)\Rightarrow x+1=-x\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
Vậy...
2/ tương tự bài 1 x = 1/2, y = -1