Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(x=2.5=10,2y=6.5=30,3z=12.5=60\)
=>\(x=10,y=15,z=20\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=-\frac{20}{-4}=5\)
x=10
y=15
z=20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=-\frac{20}{-4}=5\)
Nên : \(\frac{x}{2}=5\Rightarrow x=10\)
\(\frac{y}{3}=5\Rightarrow y=15\)
\(\frac{z}{4}=5\Rightarrow z=20\)
Vậy ............................
ta có : x/2 = y/3 = z/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2= y/3 = z/4 = x+2y-3z/ 2+2.3-3.4 =-20/-4 =5
Từ x/2 = 5 => x = 2.5 = 10
y/3 = 5 => y=3 .5 = 15
z/4 = 5 => z= 5.4 = 20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{3}=\frac{2y}{6}=\frac{2z}{9}\)
Áp ụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{3}=\frac{2y}{6}=\frac{3z}{9}=\frac{x+2y-3z}{3+6-9}=-\frac{20}{0}\)
Vô nghĩa
=> Đề sai
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)
\(\Rightarrow x=2.5=10\)
\(\Rightarrow y=3.5=15\)
\(\Rightarrow z=4.5=20\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5
=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20
tyxuxydws1gxyd=2342320 pỗ xoàn nô ta bê $%%%