Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2^x-2^y=1024\Rightarrow x>y\)
Do đó \(2^y\left(2^{x-y}-1\right)=2^{10}\)
Lại có \(2^{x-y}-1\) lẻ và là ước 10 nên \(2^{x-y}-1=1\Rightarrow2^y=2^{10}\)
\(\Rightarrow y=10\Rightarrow2^{x-10}=2^1\Rightarrow x=11\)
Vậy \(\left(x;y\right)=\left(11;10\right)\)
\(\Rightarrow2^y\left(2^{x-y}+1\right)=72\)
Vì \(2^{x-y}+1\) lẻ nên \(2^y\left(2^{x-y}+1\right)=72=2^3\cdot9\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}+1=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;3\right)\)
1024=210\(\Rightarrow\)2y.(2m-1)=210.1\(\Rightarrow\hept{\begin{cases}x=11\\y=10\end{cases}}\)
Vậy x=11;y=10
Ai ngang qua đừng quên để lại 1 L_I_K_E!!!!
Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !
Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber
1. Tìm x,y biết: ( x,y thuộc N)
a) (2x+1) (y-3) =10
Ta có: 10 = 2.5
=> 2x+1=5
=> y-3=2
Để 2x+1=5 => 2x=4=> x= 2
Để y-3=2 => y= 4
Vậy x=2 ; y=4
1. Tìm x,y biết: ( x,y thuộc N)
a) (2x+1) (y-3) =10
Ta có: 10 = 2.5
=> 2x+1=5
=> y-3=2
Để 2x+1=5 => 2x=4=> x= 2
Để y-3=2 => y= 4
Vậy x=2 ; y=4
@phynit
1024 = 210
=Từ đề được x>y và cho x=k+y (k>0)
\(2^{y+k}-2^y=2^y.2^k-2^y=2^y.\left(2^k-1\right)\)
=> \(2^y.\left(2^k-1\right)=2^{10}\)
\(2^k-1=2^{10-y}\)
Vì 2k -1 là số lẻ không chia hết cho 2 với k khác 0 mà 2^(10-y) chia hết cho 2 (sai)
Vậy k=0 và y=10 => x=10+0=10