Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2^y\left(2^{x-y}+1\right)=72\)
Vì \(2^{x-y}+1\) lẻ nên \(2^y\left(2^{x-y}+1\right)=72=2^3\cdot9\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}+1=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;3\right)\)
Ta có \(2^x-2^y=1024\Rightarrow x>y\)
Do đó \(2^y\left(2^{x-y}-1\right)=2^{10}\)
Lại có \(2^{x-y}-1\) lẻ và là ước 10 nên \(2^{x-y}-1=1\Rightarrow2^y=2^{10}\)
\(\Rightarrow y=10\Rightarrow2^{x-10}=2^1\Rightarrow x=11\)
Vậy \(\left(x;y\right)=\left(11;10\right)\)
(2x+1)(y-3)=10
ta có 10=1.10=2.5
TH1 (2x+1)=1 và (y-3)=10
TH2 (2x+1)=10 và (y-3)=1
TH3 (2x+1)=2 và (y-3)=5
TH4 (2x+1)=5 và (y-3)=2
em giải nốt
câu sau tương tự
((( k cho cj nha )))
1. Đặt A = 3x + 1
=> 2A = 6x + 2 = 3(2x - 1) + 5
Để A \(⋮\)2x - 1 <=> 2A \(⋮\)2x - 1
<=> 3(2x - 1) + 5 \(⋮\) 2x - 1
<=> 5 \(⋮\)2x - 1 (vì 3(2x - 1) \(⋮\)2x - 1)
<=> 2x - 1 \(\in\)Ư(5) = {1; 5}
Với: +) 2x - 1 = 1 => 2x = 2 => x = 1
+) 2x - 1 = 5 => 2x = 6 => x = 3
Vậy ...
nhiều kiểu lắm bn
:)