Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn vào theo link này : https://olm.vn/hoi-dap/detail/79417822508.html
Ta có:
Mặt khác: Vì lẻ nên lẻ suy ra $y$ lẻ
Do đó
Thay vào pt ban đầu ta thấy thỏa mãn
Vậy
Tìm x,y thuộc N biết
\(2x^2+3y^2=77\)
Nhanh lên các ban nhé,mk hứa sẽ tick cho bạn nào giải nhanh nhất
=> 3y^2 = 77-2x^2 < = 77
=> y^2 <= 77/3 < 26
Lại có : y^2 >= 0
=> y^2 thuộc {0^2;1^2;2^2;3^2;4^2;5^2}
Đến đó bạn lập bảng rùi giải nha
Tk mk nha
câu này mềnh cũng bít nhưng đăng lên đẻ mà cho người khác hoc như vậy thì không được đâu mềnh ghét học kiểu ấy phải tự nghĩ tốt hơn nhiều. Lời khuyên từ chuyên gia là đúng.
Có: 2x2 + 3y2 = 44 + 33
=> 2x2 + 3y2 = 2.22 + 3.11
=> x2 = 22 => x = \(\sqrt{22}\)
và y2 = 11 => y=\(\sqrt{11}\)
Ta có: 2x2+3y2=77
x2 = (77 - 3y2) / 2
= (76 + 1 - 2y2+y2) / 2
= (76 + 1 - y2 - 2y2) / 2
= 76/2 - 2y2/2 + (1 - y2) / 2
= 38 - y2+ (1-y2) / 2
Vì x2 > hoặc = 0 nên y2<38 và 1-y2 E B(2)
Mà x,y nguyên
Vậy x= 1 và y=5
Bài này giải theo cách lớp 7 thì mình chịu
đây là cách của mình (lớp 9)
\(2x^2+3y^2-77=0\)
lập denta \(\Delta=-2y^2+616\)
đề có giá trị của x thì denta >=0
kết hợp với x,y là số tự nhiên
ta suy ra \(0< =y< =5\)
77 chia 2 dư 1; 2x^2 chia 2 dư 0
vậy 3y^2 chia 2 dư 1
suy ra y lẻ
vậy \(y\in[1;3;5]\)
xét y=1 loại
xét y=3 được x=5
xét y=5 được x=1
vậy (x;y)=(1;5);(5;3)
Không hiểu chỗ nào nhắn cho mình.
\(2x^2+3y^2=77\)
\(\Rightarrow3y^2=77-2x^2\le77\)
\(\Rightarrow3y^2\le77\)
Mặt khác: \(3y^2\ge0\) nên \(0\le3y^2\le77\)
Kết hợp với \(3y^2\in Z\) và \(3y^2⋮3\)
\(\Rightarrow3y^2\in\left\{0;3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48;51;54;57;60;63;66;69;72;75\right\}\)
\(\Rightarrow y^2\in\left\{0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25\right\}\)
Vì \(y\in Z\) nên ta chọn: \(y^2\in\left\{0;4;9;16;15\right\}\)
Với \(y^2=0\Leftrightarrow3y^2=0\Leftrightarrow2x^2=77\)(loại)
Với \(y^2=4\Leftrightarrow3y^2=12\Leftrightarrow2x^2=65\)(loại)
Với \(y^2=9\Leftrightarrow3y^2=27\Leftrightarrow2x^2=50\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
Với \(y^2=16\Leftrightarrow3y^2=48\Leftrightarrow2y^2=29\)(loại)
Với \(y^2=25\Leftrightarrow3y^2=75\Leftrightarrow2x^2=2\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(5;3\right);\left(5;-3\right);\left(-5;3\right);\left(-5;-3\right);\left(1;5\right);\left(-1;-5\right);\left(1;-5\right);\left(-1;5\right)\)
2x^2 + 3y^2 = 77
=> 2x^2 = 77 - 3y^2
có 2x^2 > 0
=> 77 - 3y^2 > 0
=> 3y^2 < 77
=> y^2 < 25,66..
=> y^2 thuộc {0; 4; 9; 16; 25}
=> y thuộc {0; 2; 3; 4; 5}
thay vào tìm x
Ta có:\(3y^2\le77\) vì \(2x^2\ge0\)
\(\Rightarrow y^2\le25\)
\(\Rightarrow y\in\left\{1;2;3;4;5\right\}\) vì \(y\in N\)
Mà y là số chẵn suy ra \(y\in\left\{0;2;4\right\}\)
Đến đây bạn thay vào tìm x nốt