Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sorry bạn nhưng mình từng giải bài này
Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.
Thử : p = 2=> p + 2 = 4 là hợp số => p = 2 không thỏa mãn
Thử : p = 3 => p + 2 = 5 và p + 10 = 13 là số nguyên tố => p = 3
Chứng tỏ mọi p > 3 đều không chia hết cho 3 . Có 2 trường hợp
+) Nếu p = 3k + 1 => p + 2 = 3k + 3 chia hết cho 3 => p + 2 là hợp số
+) Nếu p = 3k + 2 => p + 10 = 3k + 12 chia hết cho 2 => p + 10 là hợp số
Vậy p = 3
bai giai
ta co
7x^2+41=6^y
7*x*x+41=6^y
x*(7*1)+41=6^y
x*7+41=6^y
ma 6 mu bao nhieu deu co tan cung la 6
suy ra 6^y co tan cung la 6
ma 41 co tan cung la 1
suy ra x*7 co tan cung la 5
ma x nguyen to
suy ra x=5
ta co
7*5^2+41=6^y
7*25+41=6^y
175+41=6^y
216=6^y
216=6^3
suy ra y=3
vay x=5 va y=3
Ta thấy:
6^y có chữ số tận cùng là 6
41 có chữ số tận cùng là 1
suy ra 7xX^2 có chữ số tận cùng là 5
suy ra X^2 có chữ số tận cùng là 5
suy ra X=5
Thay vào ta có:
7x5^2+41=6^y
7x25+41=6^y
175+41=6^y
216=6^y
suy ra y=3