Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
`xy-x+y-3=0`
`=>x(y-1)+y-1-2=0`
`=>(y-1)(x+1)=2=2.1=(-1).(-2)`
`@x+1=2` và `y-1=1`
`x=1` và `y=2`
`@x+1=1` và `y-1=2`
`x=0` và `y=3`
`@x+1=-1` và `y-1=-2`
`x=-2` và `y=-1`
`@x+1=-2` và `y-1=-1`
`x=-3` và `y=0`
\(xy-x+y-3=0\\ =>x\left(y-1\right)+\left(y-1\right)-2=0\\ =>\left(x+1\right)\left(y-1\right)=2\)
\(+,TH1:\)
\(\left\{{}\begin{matrix}x+1=2\\y-1=1\end{matrix}\right.=>\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(+,TH2:\\ \left\{{}\begin{matrix}x+1=1\\y-1=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
\(+,TH3:\\ \left\{{}\begin{matrix}x+1=-1\\y-1=-2\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\\ +,TH4:\\ \left\{{}\begin{matrix}x+1=-2\\y-1=-1\end{matrix}\right.=>\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)
ta có : 2xy + 5x - 6y =19
2y(x-3) +5x -15 = 19-15
2y(x-3) +5(x-3) = 4
(2y+5)(x-3) = 4
để x;y là số nguyên thì 2y+5;x-3 phải thuộc Z => 2y+5;x-3 phải thuộc ước của 4= { 1;-1;2;-2;4;-4 }
Lập bảng :
2y+5 | 1 | -1 | 2 | -2 |
y | -2 | -3 | loại | loại |
x-3 | 4 | -4 | 2 | -2 |
x | 7 | -1 | 5 | 1 |
Vậy ......
xy=x+y
=> x(y-1)=y (*)
=> x=y/(y-1)
Để x nguyên thì y chia hết cho y-1
do y, y-1 luôn nguyên tố cùng nhau với y-1>=2 hoặc y-1<=-2
=> y-1=1 hoặc y-1=-1
TH1: Nếu y-1=1
=>y=2
(*) => x=2
TH2 :Nếu y-1=-1 => y=0 và x=0
Vậy có cặp số nguyên (x;y) =(2,2) và (0,0).
a) Ta có : \(x+y+xy=0\Rightarrow x+xy+y+1=1\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=1\Rightarrow\left(x+1\right)\left(y+1\right)=1\)
Vậy thì x + 1 và y + 1 phải là ước của 1.
Ta có bảng:
x + 1 | 1 | -1 |
y + 1 | 1 | -1 |
x | 0 | -2 |
y | 0 | -2 |
Vậy ta tìm được các cặp (x;y) = (0 ; 0) và (-2 ; -2).
b)
Ta có : \(x-y-xy=0\Rightarrow x-xy+1-y=1\)
\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=1\Rightarrow\left(x+1\right)\left(1-y\right)=1\)
Vậy thì x + 1 và 1 - y phải là ước của 1.
Ta có bảng:
x + 1 | 1 | -1 |
1 - y | 1 | -1 |
x | 0 | -2 |
y | 0 | 1 |
Vậy ta tìm được các cặp (x;y) thỏa mãn là (0;0) và (-2;1)
\(\Leftrightarrow y\left(x-2\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
TH1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy (x;y) = (3;0); ( 1;-2)
Từ \(5x-xy-y=0\Rightarrow5x=xy+y\Rightarrow5x=\left(x+1\right)y\)
\(\Rightarrow y=\frac{5x}{x+1}\Rightarrow y=\frac{5x+5-5}{x+1}\Rightarrow y=\frac{5\left(x+1\right)-5}{x+1}\)
\(\Rightarrow y=5-\frac{5}{x+1}\) Do \(y\in Z\Rightarrow5-\frac{5}{x+1}\in Z\Rightarrow\frac{5}{x+1}\in\Rightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-5;-1;1;5\right\}\)
Với x + 1 = - 5 => x = - 6 thay vào tính được y = 6
Với x + 1 = -1 => x = - 2 thay vào ta có y = 10
Với x + 1 = 1 => x = 0 thay vào tính được y = 0
Với x + 1 = 5 => x = 4 thya vào tính được y = 4
Vậy ta có các cặp (x,y) thỏa mãn là: ( x = -6;y = 6),( x = -2;y = 10),(x = 0,y = 0),(x = 4 ;y = 4)