K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

\(\dfrac{x}{8}=\dfrac{y}{12}\\ =>\dfrac{2x}{16}=\dfrac{3y}{36}\)

mà 2x+3y=12

áp dụng dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{16}=\dfrac{3y}{36}=\dfrac{2x+3y}{16+36}=\dfrac{12}{52}=\dfrac{3}{13}\)

\(=>x=\dfrac{3}{13}\cdot8=\dfrac{24}{13}\\ y=\dfrac{3}{13}\cdot12=\dfrac{36}{13}\)

21 tháng 12 2015

\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)

=>4/x=1/25=>x=100

=>7/y=1/25=>y=175

=>12/z=1/25=>z=300

4 tháng 5 2019

a)  ( 2 x + 1 ) ( 3 y − 2 ) = − 55

Suy ra  ( 2 x + 1 )   v à   ( 3 y − 2 ) ∈ Ư ( - 55 )   =   1 ;   − 1 ;   5 ;   − 5 ;   11 ;   − 11 ;   55 ;   − 55

Khi đó ta có bảng sau:

b)  ( x − 3 ) ( 2 y + 1 ) = 7

Suy ra  ( x − 3 ) và  ( 2 y + 1 ) ∈ Ư ( 7 )   =   1 ;   − 1 ;  7 ;   − 7

Khi đó ta có bảng sau

c)  y ( y 4 + 12 ) = − 5

Suy ra  ( y 4 + 12 ) ∈ Ư ( - 5 ) =   1 ;   − 1 ;  5 ;   − 5

Vì  y 4 ≥ 0 ⇒ y 4 + 12 ≥ 12 ⇒ không có giá trị của y thỏa mãn ycbt.

6 tháng 4 2016

áp dung tc cua day ti so bang nhau co

\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{-15}{5}=-3\)

x=-6;y=-9

y b lam tuong tuu nhung thay cong bang tru 

y c

co \(\frac{x}{y}=\frac{7}{-9}\Rightarrow\frac{x}{7}=\frac{y}{-9}\Rightarrow\frac{2x}{14}=\frac{3y}{-27}\)

lam tuong tuu y a

d,

h cheo

7 ( x + 4 ) = 4 ( 7 + y )

7x + 28 = 4y + 28 

        7x = 4y

\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)

ap dung tc cua day ti so bang nhau va lam tuong tuu y a

t i c k nha

30 tháng 8 2016

Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

       Áp dụng tính chất dãy tỉ số bằng nhau ta có:

                 \(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{12}{5}\)

\(\Rightarrow\begin{cases}\frac{x}{3}=\frac{12}{5}\\\frac{y}{2}=\frac{12}{5}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{36}{5}\\y=\frac{24}{5}\end{cases}\)

      Vậy \(x=\frac{36}{5};y=\frac{24}{5}\)

30 tháng 8 2016

Ta có: \(2x=3y\Leftrightarrow x=\frac{3y}{2}\)

Ta lại có: \(x+y=12\)

Hay \(\frac{3y}{2}+y=12\)

\(\Leftrightarrow\frac{5y}{2}=12\)

\(\Leftrightarrow y=\frac{12\times2}{5}\)

\(\Leftrightarrow y=4.8\)

Vậy \(x=\frac{3y}{2}=7.2\)

29 tháng 12 2015

1)(x-3)(y+2)=-6

Ta xét bảng sau:

x-31236-1-2-3-6
x4569210-3
y+2-6-3-2-16321
y-8-5-4-3410-1

 

2)(5-x)(4-y)=-5

Ta xét bảng sau:

5-x15-1-5
x40610
4-y-5-151
y95-13

 

3)4) tương tự

 

16 tháng 12 2023

2xy+4x-3y=1

 

Giải:

a) \(\left(x-4\right).\left(y+1\right)=8\) 

\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng giá trị:

x-4-8-4-2-11248
y+1-1-2-4-88421
x-402356812
y-2-3-5-97310

\(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\) 

b) \(\left(2x+3\right).\left(y-2\right)=15\) 

\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\) 

2x+3-15-5-3-113515
y-2-1-3-5-1515531
x-9-4-3-2-1016
y1-1-3-1317753

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\) 

c) \(xy+2x+y=12\) 

\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\) 

x+112714
y+214721
x01613
y1250-1

Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\) 

d) \(xy-x-3y=4\) 

\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\) 

\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\) 

Ta có bảng giá trị:

x-317
y-171
x410
y82

Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)

DD
21 tháng 6 2021

1) \(\left(x-4\right)\left(y+1\right)=8\)

Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên 

ta có bảng giá trị: 

x-41248
y+18421
x56812
y7310

2) \(\left(2x+3\right)\left(y-2\right)=15\)

Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị: 

2x+33515
y-2531
x016
y793

3) \(xy+2x+y=12\)

\(\Leftrightarrow x\left(y+2\right)+y+2=14\)

\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)

Tiếp tục bạn làm tương tự 1) và 2).

4) \(xy-x-3y=4\)

\(\Leftrightarrow y\left(x-3\right)-x+3=7\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)

Tiếp tục bạn làm tương tự 1) và 2).