Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
a, \(\left|x+25\right|+\left|-y+5\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x+25\right|\ge0\\\left|-y+5\right|\ge0\end{matrix}\right.\Rightarrow\left|x+25\right|+\left|-y+5\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+25\right|=0\\\left|-y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-25\\y=5\end{matrix}\right.\)
Vậy x = -25 và y = 5
b, \(\left|x-40\right|+\left|x-y+10\right|\le0\)
Mà \(\left|x-40\right|+\left|x-y+10\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-40\right|=0\\\left|x-y+10\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=40\\y=50\end{matrix}\right.\)
Vậy x = 40 và y = 50
\(\left|x+25\right|+\left|-y+5\right|=0\)
\(\left\{{}\begin{matrix}\left|x+25\right|\ge0\\\left|-y+5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+25\right|+\left|-y+5\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x+25\right|=0\Rightarrow x=25\\\left|-y+5\right|=0\Rightarrow-y=-5\Rightarrow y=5\end{matrix}\right.\)
\(\left|x-40\right|+\left|x-y+10\right|\le0\)
\(\left\{{}\begin{matrix}\left|x-40\right|\ge0\\\left|x-y+10\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-40\right|+\left|x-y+10\right|\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-40\right|+\left|x-y+10\right|\le0\\\left|x-40\right|+\left|x-y+10\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-40\right|+\left|x-y+10\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-40\right|=0\Rightarrow x=40\\\left|x-y+10\right|=0\Rightarrow x-y=-10\Rightarrow y=50\end{matrix}\right.\)
a) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5=0\\x^2-25=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\\x^2=25\end{matrix}\right.\) \(\Leftrightarrow x^2=25\) \(\Leftrightarrow x=\pm5\)
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
x + 25| + |−y + 5| = 0
⇒ |x + 25| = 0 và |−y + 5| = 0
|x + 25| = 0
⇒ x + 25 = 0
⇒ x = −25
|−y + 5| = 0
⇒ −y + 5 = 0
⇒ −y = −5
⇒ y = 5
Vậy cặp số ( x,y) là (−25; 5)