Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M-\left(3xy-4y^2\right)=x^2-7xy+8y^2\)
\(\Leftrightarrow M=x^2-7xy+8y^2+\left(3xy-4y^2\right)\)
\(\Leftrightarrow x^2-7xy+8y^2+3xy-4y^2\)
\(\Leftrightarrow x^2+\left(-7xy+3xy\right)+\left(8y^2-4y^2\right)\)
\(\Leftrightarrow x^2+\left(-4xy\right)+4y^2\)
\(\Rightarrow M=x^2+\left(-4xy\right)+4y^2\)
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\) \(\forall x,y\)
mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\) (đề bài ) \(\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Rút gọn biểu thức
\(m+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
=> \(m=x^2+11xy-y^2\)
Thay x,y, vừa tìm được vào biểu thức đã được rút gọn ta tính được m
a, 2009; 0
b, x= 0.5 ; y= 0.4; z=0.9
sai thì thôi nhé
VT đã để x^2 => đừng tính như @ nguyễn nam=> chậm thêm 2 bước
x=\(\frac{24.25}{2}=12.25=3.100=300\)
1^3+2^3...+24^3=90 000
\(\Rightarrow x=\sqrt{90000}\)
\(\Rightarrow x=300\)
A = |2x - 5| + 3 - 2x
A = 2x - 5 + 3 - 2x
A = (2x - 2x) + (-5 + 3)
A = -2
B = |x2 - 5x + 4| - 4 + 5x - x2
B = x2 - 5x + 4 - 4 + 5x - x2
B = (x2 - x2) + (-5x + 5x) + (4 - 4)
B = 0
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s: \(x\ge y\ge z\)
Vì x2 + y2 + z2 = 14 => \(x^2\le14\Rightarrow x\le\sqrt{14}< 4\) Vì x nguyên dương
=> x \(\in\){ 1; 2; 3}
+) Với x = 3 => \(\hept{\begin{cases}y+z=3\\y^2+z^2=5\end{cases}\Rightarrow\hept{\begin{cases}y+z=3\\y^2\le5\end{cases}}\Rightarrow\hept{\begin{cases}y+z=3\\y\in\left\{1;2\right\}\end{cases}}}\)
Khi y = 2 => z = 1 ( thỏa mãn)
Khi y = 1 => z = 2 ( loại)
+) Với x = 2 => \(\hept{\begin{cases}y+z=4\\y^2+z^2=10\end{cases}}\)=> Tồn tại 1 trong 2 số y; z lớn hơn 2 => lớn hơn x => loại
+) Với x = 1 => Loại
Vậy nghiệm : ( 3; 2; 1) và các hoán vị của nó: ( 3; 1; 2) ; ( 2; 3; 1) ; ( 2; 1; 3 ) ; ( 1; 2; 3) ; ( 1; 3; 2)