Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x\left(x-1\right)-2\left(1-x\right)=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x\left(x+1\right)=2\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
2) \(\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
3) \(\left(x-3\right)^3+\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)^3+3=x\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-2\right)=0\)
4) \(x^3=x^5\)
\(\hept{\begin{cases}x=-1\\x=1\\x=0\end{cases}}\)
b) \(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x+1=0\)
\(\Leftrightarrow x=1\) hoặc \(x=-1\)
c) \(x^2-6x+8=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
(do \(x^2+1\ge1>0\))
a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)
\(\Leftrightarrow-x^3+5x^2-5x=0\)
\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)
a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)
\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)
\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)
=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)
\(\Leftrightarrow-12=0\left(vn\right)\)
c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)
\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)
\(\Leftrightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
a) \(x\left(x-1\right)-2\left(1-x\right)=0\).
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
b) \(2x\left(x-2\right)-\left(2-x\right)^2=0\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c) \(\left(x-3\right)^3+\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x-3\right)^2-1\right]=0\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=4\\x=2\end{cases}}\)
d) \(x^3=x^5\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
áp dụng hằng đẳng thức thôi bạn
\(\left(x+1\right)\left(x-1\right)-\left(x+3\right)\left(x-3\right)=0\) (*)
\(\Leftrightarrow\left(x^2-1\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2-1-x^2+9=0\)
\(\Leftrightarrow8=0\) (vô lý)
KL: pt (*) vô nghiệm
(x+1)(x−1)−(x+3)(x−3)=0 (*)
⇔(x2−1)−(x2−9)=0
⇔x2−1−x2+9=0
⇔8=0 (vô lý)
KL: pt (*) vô nghiệm