Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
2.
\(\left(x^2-9\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
3.
\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right).3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
4.
\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
1/ ( x-1) (2x+1) =0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)
2/ x (2x-1) (3x+15) =0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)
3/ (2x-6) (3x+4).x=0
\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
4/ (2x-10)(x2+1)=0
\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)
5/ (x2+3) (2x-1) =0
\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)
6/ (3x-1) (2x2 +1)=0
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)
1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)
3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
1/ x2-3x+2=0
⇒ (x2-2x)-(x-2)=0
⇒ x(x-2)-(x-2)=0
⇒ (x-1)(x-2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2) x2-6x+5=0
⇒x2-6x+9-4=0
⇒(x2-6x+9)-22=0
⇒(x-3)2-22=0
⇒(x-3-2)(x-3+2)=0
⇒(x-5)(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3) 2x2+5x+3=0
⇒ (2x2+2x)+(3x+3)=0
⇒ 2x(x+1)+3(x+1)=0
⇒ (x+1)(2x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)
4) x2-8x+15=0
⇒ (x2-8x+16)-1=0
⇒ (x-4)2-12=0
⇒ (x-4-1)(x-4+1)=0
⇒ (x-5)(x-3)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5) x2-x-12=0
⇒ (x2-4x)+(3x-12)=0
⇒ x(x-4)+3(x-4)=0
⇒ (x-4)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1: Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: Ta có: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3: Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4: Ta có: \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5: Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)
\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)
2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)
3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)
1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)
1. x(x + 1) - x2 + 1 = 0
<=> x(x + 1) - (x2 - 1) = 0
<=> x(x + 1) - (x + 1)(x - 1) = 0
<=> (x - x + 1)(x + 1) = 0
<=> x + 1 = 0\
<=> x = -1
2. 4x(x - 2) - 6 + 3x = 0
<=> 4x(x - 2) - (3x - 6) = 0
<=> 4x(x - 2) - 3(x - 2) = 0
<=> (4x - 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
3. x(x + 2) - 3(x + 2) = 0
<=> (x - 3)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)