Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{32-x}{7}=\frac{x-42}{9}\)
=\(\frac{\left(32-x\right)9}{63}=\frac{\left(x-42\right)7}{63}\)
\(\Rightarrow\)\(\left(32-x\right)9=\left(x-42\right)7\)
=\(288-x9=x7-294\)
=\(288+294=x9+x7\)
=\(x=-36\frac{6}{16}\)
=\(x\times16=-582\)
\(x=-582\div16\)
a,\(\frac{32-x}{7}=\frac{x-42}{9}\)
\(\Leftrightarrow9\left(32-x\right)=7\left(x-42\right)\)
\(\Leftrightarrow288-9x-7x-294=0\)
\(\Leftrightarrow9x+7x=288-294\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
b. \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+3\right|=-4x^2+4x-1\)
\(\left|x+3\right|=x+3\)khi \(x+3\ge0\)hay \(x\ge-3\)
\(\left|x+3\right|=-\left(x+3\right)\)khi \(x+3< 0\)hay \(x< -3\)
với \(x\ge-3\Rightarrow x+3=-4x^2+4x-1\)
\(\Leftrightarrow4x^2-4x+1+x+3=0\)
\(\Leftrightarrow4x^2-3x+4=0\)\(\Leftrightarrow\)vô nghiệm
với \(x< -3\)\(\Rightarrow-x-3=-4x+4-1\)
\(\Leftrightarrow4x^2-4x+1-x-3=0\)
\(\Leftrightarrow4x^2-5x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{57}}{8}\left(tm\right)\\x=\frac{5-\sqrt{57}}{8}\left(L\right)\end{cases}}\)
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
a.
\(\left(\frac{1}{3}\right)^2\times27=3^x\)
\(\frac{1^2}{3^2}\times3^3=3^x\)
\(3^1=3^x\)
\(x=1\)
b.
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\frac{\left(-2\right)^6}{\left(-2\right)^x}=\left(-2\right)^5\)
\(\left(-2\right)^x=\frac{\left(-2\right)^6}{\left(-2\right)^5}\)
\(\left(-2\right)^x=-2\)
\(x=1\)
c.
\(3x^2-\frac{1}{2}x=0\)
\(x\times\left(3x-\frac{1}{2}\right)=0\)
TH1:
\(x=0\)
TH2:
\(3x-\frac{1}{2}=0\)
\(3x=\frac{1}{2}\)
\(x=\frac{1}{2}\div3\)
\(x=\frac{1}{2}\times\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy x = 0 hoặc x = 1/6
a)\(\left|\frac{1}{3}x+\frac{5}{4}\right|-\frac{1}{8}=0\)
\(\Leftrightarrow\left|\frac{1}{3}x+\frac{5}{4}\right|=\frac{1}{8}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x+\frac{5}{4}=\frac{1}{8}\\\frac{1}{3}x+\frac{5}{4}=-\frac{1}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{27}{8}\\x=-\frac{33}{8}\end{cases}}\)
Vậy x=-27/8 và x=-33/8
b) \(\frac{x-2}{32}=\frac{2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\hept{\begin{cases}x-2=8\\x-2=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\x=-6\end{cases}}\)
vậy x=10 hoặc x=-6
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\Rightarrow64\div\left(-2\right)^x=-32\)
\(\Rightarrow\left(-2\right)^x=64\div\left(-32\right)\)
\(\Rightarrow\left(-2\right)^x=\left(-2\right)^1\)
\(\Rightarrow x=1\)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Xét \(\left(x-2\right)\left(x+\frac{2}{3}\right)=0\Rightarrow\hept{\begin{cases}x-2=0\\x+\frac{2}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=-\frac{2}{3}\end{cases}}\)
Mà \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) nên \(\left(x-2\right)\) và \(\left(x+\frac{2}{3}\right)\) đồng dấu
Suy ra \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Leftrightarrow x>2}\) (do \(2>-\frac{2}{3}\)) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Leftrightarrow x< -\frac{2}{3}}\) (do \(-\frac{2}{3}< 2\))
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Lưu ý rằng: dấu ngoặc \(\hept{\begin{cases}...\\...\end{cases}}\) thay thế cho chữ hoặc nhé!
a,
\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
=>\(2x+1=5\)
2x=5-1
2x=4
x=4:2
x=2
b, mình không biết cách làm
a)\(\left(\frac{1}{2}\right)^{2x+1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{2x+1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow x=2\)
`Answer:`
`\frac{x-1}{34}+\frac{x-2}{34}=\frac{x-3}{32}+\frac{x-4}{31}`
`<=>\frac{x-1}{34}-1+\frac{x-2}{33}-1=\frac{x-3}{32}-1+\frac{x-4}{31}-1`
`<=>\frac{x-35}{34}+\frac{x-35}{33}=\frac{x-35}{32}+\frac{x-35}{31}`
`<=>(x-35)(\frac{1}{34}+\frac{1}{33}-\frac{1}{32}-\frac{1}{31})=0`
`<=>x-35=0`
`<=>x=35`
1,|x|=3=>\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
2,x(x+1)<0