K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

x2 - x = 2

<=> x2 - x - 2 = 0

<=> x2 + x - 2x - 2 = 0

<=> ( x2 + x ) - ( 2x + 2 ) = 0

<=> x( x + 1 ) - 2( x + 1 ) = 0

<=> ( x - 2 )( x + 1 ) = 0

<=> x - 2 = 0 hoặc x + 1 = 0

<=> x = 2 hoặc x = -1

Vậy S = { 2 ; -1 }

2 tháng 8 2020

a, \(x^2-x=2\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

29 tháng 6 2021

a, \(\Leftrightarrow3x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy ...

b, \(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy ...

c, \(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy ...

29 tháng 6 2021

\(a.\)

\(3x^2-6x=0\)

\(\Leftrightarrow3x\cdot\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(b.\)

\(x\cdot\left(x-6\right)+10\cdot\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\cdot\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

\(c.\)

\(\left(x+2\right)^2=x+2\)

\(\Leftrightarrow x^2+4x+4-x-2=0\)

\(\Leftrightarrow x^2+3x+2=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

14 tháng 12 2021

\(a,\Leftrightarrow\left(x-2\right)^3-3x\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-2-3x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(-2x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

26 tháng 12 2023

a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)

\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)

\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)

\(\Leftrightarrow x^2-6x-1+16-x^2=0\)

\(\Leftrightarrow-6x+15=0\)

\(\Leftrightarrow6x=15\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

b) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

29 tháng 7 2021

`a)4x(x-2)+x-2=0`

`<=>(x-2)(4x+1)=0`

`<=>[(x-2=0),(4x+1=0):}`

`<=>[(x=2),(x=-1/4):}`

Vậy `S={2;-1/4}.`

`b)(3x-1)^3-9=0`

`<=>(3x-1-3)(3x-1+3)=0`

`<=>(3x-4)(3x+2)=0`

`<=>[(3x-4=0),(3x+2=0):}`

`<=>[(x=4/3),(x=-2/3):}`

Vậy `S={4/3;-2/3}.`

`c)x^3-8+(x-2)(x+1)=0`

`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`

`<=>(x-2)(x^2+3x+5)=0`

Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`

`<=>x-2=0`

`<=>x=2`

Vậy `S={2}`

a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b)Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

6 tháng 8 2021

a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)

b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)

c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)

a) Ta có: \(4x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b) Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

27 tháng 9 2021

a. x2 - 6x = -9

<=> x2 - 6x + 9 = 0

<=> (x - 3)2 = 0

<=> x - 3 = 0

<=> x = 3

b. 2(x + 3) - x2 + 3x = 0

<=> 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) 

27 tháng 9 2021

Phần b bị sai rồi kìa nếu đặt dấu trừ trc thì trong ngoặc đổi dấu 

28 tháng 12 2021

\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

6 tháng 11 2021

a) \(\Rightarrow x^2+4x+25-x^2=3\Rightarrow4x=-22\Rightarrow x=-\dfrac{11}{2}\)

b) \(\Rightarrow\left(4x+3-2x+3\right)\left(4x+3+2x-3\right)=0\)

\(\Rightarrow2\left(x+3\right).6x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)