Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK chỉ làm câu b và c thôi nha
b)2x+|x-3|=6
TH1:2x+x-3=6
3x-3=6
3x=9
x=3
TH2:2x+-(x-3)=6
2x-x+3=6
x+3=6
x=3
Vậy x=3
c)3x-1=|2x-1|
TH1:3x-1=2x-1
3x-1-2x+1=0
x=0
TH2:3x-1=-(2x-1)
3x-1=1+2x
3x-1-1-2x=0
x-2=0
x=2
Vậy x=0;2
\(\left(2x-1\right)^3=\dfrac{8}{125}\)
\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)
\(\text{Vậy }2x-1=\dfrac{2}{5}\)
\(2x\) \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)
\(x\) \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)
\(\text{hoặc }2x-1=\dfrac{-2}{5}\)
\(2x\) \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)
\(x\) \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)
a)
(2x+1)2=25
=> \(\left[\begin{array}{nghiempt}2x+1=5\\2x+1=-5\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}2x=4\\2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
d)
(x-1)3=-125
=> x-1=-5
=> x=-4
còn câu b và c bạn viết đề rõ hơn nha
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{9}{15}-\frac{10}{15}=\frac{-1}{15}\)
\(x=\frac{-1}{15}.\frac{1}{3}\)
\(x=\frac{-1}{45}\)
Vậy x = \(\frac{-1}{45}\)
c) \(\left|2x-1\right|+1=4\)
\(\left|2x-1\right|=4-1=3\)
2x-1 = 3 ; -3
TH1: 2.x - 1 = 3
2.x = 3 + 1 = 4
x = 4 : 2 = 2
TH2: 2.x - 1 = -3
2.x = -3 + 1 = -2
x = -2 : 2 = -1
Vậy x \(\in\){ 2 ; -1 }
Ngại làm ấn máy ==
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
\(\Rightarrow\left(2x+3\right)^3=\left(-5\right)^3\)
\(\Rightarrow\left(2x+3\right)=-5\)
\(\Rightarrow2x=-8\)
\(\Rightarrow x=\left(-8\right):2\)
\(\Rightarrow x=-4\)
tíc mình nha
a) \(|2x-2|+|3-3x|=125\left(1\right)\)
Ta có:
\(2x-2=0\Leftrightarrow x=1\)
\(3-3x=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-2x\right)+\left(3-3x\right)=125\)
\(2-2x+3-3x=125\)
\(-5x+5=125\)
\(-5x=120\)
\(x=-24\)( chọn )
Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)
Thay (3) vào (1) ta được :
\(\left(2x-2\right)+\left(3x-3\right)=125\)
\(2x-2+3x-3=125\)
\(5x-5=125\)
\(5x=130\)
\(x=26\)9 (CHọn )
Vậy \(x\in\left\{-24;26\right\}\)
b) \(|x-2018|+|x-2019|=1\left(1\right)\)
Ta có: \(x-2018=0\Leftrightarrow x=2018\)
\(x-2019=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(2018-x\right)+\left(2019-x\right)=1\)
\(2018-x+2019-x=1\)
\(4037-2x=1\)
\(2x=4036\)
\(x=2018\)( Loại )
+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(x-2018\right)+\left(2019-x\right)=1\)
\(x-2018+2019-x=1\)
\(1=1\)( luôn đúng )
+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(x-2018\right)+\left(x-2019\right)=1\)
\(2x-4037=1\)
\(x=2019\)( Chọn )
Vậy \(2018\le x\le2019\)
\(2x-1+\left|x-3\right|=125\) (1)
+)TH1: x-3<0 <=>x<3 thì(1) trở thành:
2x-1+3-x=125
<=> x=123 (ktm)
(2x-1)\(^3\)=-125
(2x-1)\(^3\)= - 5\(^3\)
2x - 1 = -5
2x = -5+1
2x =-4
x = -4:2
x = -2